
Zed3D
A compact reference for 3d computer

graphics programming

by Sébastien Loisel
 1994, 1995, 1996

2

Zed3D - A compact reference for 3d
computer graphics programming

Copyright 1994, 1995, 1996 by Sébastien Loisel All Rights
Reserved, version 0.95β

Zed3D is a document about computer graphics, more particularly real-time 3d
graphics. This document should be viewed as a practical reference for a first and
perhaps second course in computer graphics.

The original Zed3D document grew out of my work notes. As a matter of fact, the
original Zed3D, up to version 0.61beta, was my work notes. As such, it was
messy, incomplete and often incorrect. I have attempted to correct this a bit now. I
still consider these my work notes, but I have added more formal introductory
material which was not in the original document.

In this document, I will attempt to describe various aspects of computer graphics
in a clear, useful and complete fashion. You will find quite a bit of the theoretical
aspects, copies of the calculations and proofs I made and so forth.

3

However, there is the painful fact that I am merely a student, trying to mark my
territory in the university work, and since this work does not serve that purpose
very well, Zed3D will oftentimes be lacking in areas that I wish I had more time to
document. Also, I will attempt to distribute another nice portable graphics engine
in the future, but that's only if I can find the time to make it.

Also, please note that this document and any accompanying
documentation/software for which I am the author should not be considered public
domain. You can redistribute this whole thing, unmodified, if no fee is charged for
it, otherwise you need the author's written permission. Also I am not responsible
for anything that might happen anywhere even if it's related directly or indirectly to
this package. If you wish to encourage my effort, feel free to send me a 10$ check,
which will be considered to be your official registration. If you're really on a
budget, I would appreciate at least a postcard. At any rate, please read the
registration paragraph below. There have been rumours about a 0.70 version of
Zed3D about. This would be a fake, versions between 0.63 and 0.79 do not exist,
and have never existed.

Contact information

If you wish to contact me for any reason, you should be using the following snail-
mail address or my e-mail address. Given that snail-mail addresses tend to be more
stable over time, you might try it if I don't answer to your electronic messages.

E-Mail Address: zed@cs.mcgill.ca

Snail Mail Address:

For the 1995-1996 school year, I will reside at:

Sébastien Loisel

3436 Aylmer Street, apartment 2

Montréal, Québec, Canada

Postal Code: H2X 2B6

Otherwise, it is possible to reach me at:

Sébastien Loisel

1 J.K. Laflamme

Lévis, Québec, Canada

Postal Code: G6V 3R1

Registration

4

If you want to register your copy of Zed3D for life, and be able to use the source
in any way you want, even commercial (though commercial utilization of the
documentation [this file] still requires the written permission of the author), you
can send me a cheque of US$10.00. For more information, please consult the file
register.frm, which should have come with this document. If you are experiencing
difficulties with registration or if the file register.frm is missing, please mail me and
we will work something out.

Overview

I am trying to put a bit more structure into this document. As such, this is how it is
meant to be structured at this moment.

The first section is heavily mathematical. It deals with transformations by and at
large. First are discussed linear and affine transformations, which are used to spin
and move stuff in space in a useful fashion, then is discussed and justified the
perspective transforms. These two sections are very theoretical, but are required
for proper understanding of the later sections.

Then there will follow a section dealing specifically with applications of the
preceding theory. Namely, rotation matrices and their inverse and object hierarchy.

The third "section" concerns itself mainly with rendering techniques. These are
becoming less and less important for several reasons. The complexity of the
problem is of course not in the rendering section of the pipeline. Second, the recent
trend has pushed the rendering part of the pipeline into cheap video hardware
which can do the job fast and effectively while the CPU is off to some other, more
important task. Eventually, we can hope that transforming objects will also be
made a part of popular low-cost hardware, but that remains to be seen. As it is
now, this is often the job of either the CPU, or sometimes we might wish to give
this job to a better co-processor (for example, a programmable DSP).

Fourthly, an attempt will be made to describe a few shading models and visible
surface determination techniques. Shading models are but loosely related to the
way the polygons are drawn. Visible surface determination depends somewhat
more on the way polygons are drawn, and is often implemented in hardware.

The following section deals with a few of the computer graphics related problems
that are often encountered, such as error tolerant normal computation, the problem
of finding a correctly oriented normal, polygon triangulation and quaternions to
represent orientations, which are especially useful in keyframe animations.

5

There is also a short glossary and even shorter bibliography. [1] is a highly
recommended reading to anyone intending to do serious computer graphics. There
is a lot of overlap between Zed3D and [1], though [1] doubtlessly contains a great
deal more information than this text. However, Zed3D does cover a rare few
topics which are more or less well covered in [1] (example: quaternions).

Of course, a lot of topics remain to be covered, such as real-time collision
detection, octrees and other data structures. However, I unfortunately do not have
the time to write all of that down for the general public.

6

Table of Contents

Zed3D - A compact reference for 3d computer graphics
programming ...2

Contact information.. 3
Registration.. 3

Overview ... 4

Table of Contents...6

Vector mathematics ...10

Introduction... 10
On notation .. 10

Vector operations .. 11
Exercises .. 12
Answers ... 13

Alcoholism and dependance ... 13
Exercises .. 14
Answers ... 15

On a plane (and of motion sickness) ... 15
Exercises .. 16
Answers ... 17

Orthonormalizing a basis.. 17

Matrix mathematics ...19

Introduction... 19
Matrix operations... 19

Exercise ... 21
Answer... 22

Matrix representation & linear transformations... 22

Affine transforms...25

7

Introduction... 25
Affine transformations.. 25

Exercise ... 26
Affine transform combination and inversion.. 27

Exercise ... 27
Answer... 28

Applications of linear transformations...30

Introduction... 30
World space, eye space, object space, outer space.. 30
Transformations in the hierarchy (or the French revolution).............................. 31
Some pathological matrices.. 31

Perspective...34

Introduction... 34
A simple perspectively incorrect projection .. 35
The perspective transformation .. 35
Theorems... 38
Other applications .. 39

Constant Z ... 41
Texture mapping equations revisited... 41
Bla bla.. 43

Reality strikes .. 44

Interpolations and approximations...46

Introduction... 46
Forward differencing.. 46
Approximation function ... 48

Polynomial Splines ..51

Introduction... 51
Basic splines .. 51
Parametrized splines... 54
Uniform splines.. 54
Examples ... 57
Frequently used uniform cubic splines .. 60

Hermite splines... 60
Bézier splines ... 61
Convex hull .. 62

8

Bernstein polynomials... 63
Uniform nonrational B-spline.. 64

Catmull-Rom splines: a non-uniform type of spline... 65

Rendering ..66

Introduction... 66
The point ... 66
Lines.. 69
Polygon drawing.. 70

Visible surface determination ..73

Introduction... 73
Back-face culling ... 74
Sorting... 75
Painter's algorithm and depth sorting.. 77
Z-Buffering.. 79
Binary Space Partitioning... 80

Lighting models ...84

Introduction... 84
Lighting models ... 84
Smooth shading ... 86
Texture mapping & variants on the same theme.. 89

Computer graphics related problems ...91

Introduction... 91
Generating edge normals.. 91
Triangulating a polygon ... 92
Computing a plane normal from vertices .. 93
Generating correctly oriented normals for polyhedra .. 94
Polygon clipping against a line or plane .. 95

Quaternions..97

Introduction... 97
Preliminaries .. 98
Conversion between quaternions and matrices.. 99
Orientation interpolation .. 99

9

Antialiasing..101

Introduction... 101
Filtering ... 101
Pixel accuracy.. 102
Sub-pixel accuracy... 104
Time antialiasing, a.k.a. motion blur ... 105
Mipmapping... 106

Uniform Mipmapping ... 107
Nonuniform Mipmapping ... 108
Summed area tables.. 109

Bi-linear interpolation .. 110
Tri-linear interpolation ... 111

Glossary ...112

Bibliography ..115

10

Vector mathematics

Introduction

Linear algebra is a rather broad yet basic field of college level mathematics. It is
being taught (or should be at any rate) early on to students in mathematics and
engineering. However simple it is, it's a lengthy topic to discuss. And since this
document is not meant as a mathematics textbook, I will only give here the gist of
the thing.

If you need further information on the topic, browse your local library for linear
algebra books and somesuch, or go ask a professor. As of now, I'm not making
any bibliography for this, but if and when I do, I'll try to give a few decent
references.

The purpose of linear algebra in 3d graphics is to implement all the rotation,
skewing, translation, changes in coordinates, and otherwise affine transformations
to 3d object. The applications range from merely rotating an object about its own
system of axis to object hierarchy, moving cameras and can be extended through
quaternions for rotation interpolation and such.

As such, linear algebra is something that is essential for any 3d graphics engine to
be useful.

Since my prime concern is 3d graphics, I will give only whatever theory is
absolutely necessary for that topic. What's below extends in a vary natural way to
n dimensions, n>3, except for cross product, which is a bit awkward.

On notation

I will frequently use the sigma symbol for sums, for example, something like this:

∑0≤i≤nai

which stands for

a0+a1+a2+a3+...+an.

11

More generally, the notation

∑i∈ Iai

stands for “sum of all ai for all i in I”. This notation will not be used frequently in
this work. Notation from more advanced math might be used especially in proofs.

Vector operations

A vector in 3d is noted (a,b,c) where a, b and c are real numbers. Similarly, a
vector in 2d is noted (a,b) for a, b real numbers. The vector for which all
components are null deserves a special mention, it is usually noted 0, with the
proper number of components implied in the notation but not explicitly given.

A vector should be thought of as an oriented line segment from the origin (0) to a
point P in space. Let's take a 2d example (this is also valid for 3d or higher
dimension). The vector V=(1,2) can be represented as an oriented segment from
(0,0) to P=(1,2), as can be seen below. A vector should always be pictured as an
arrow from 0 to the point P. Using this model, we can think of a vector from
P1=(a,b) to P2=(c,d) as the vector from (P1-P1) to (P2-P1), or from (0,0) to (c-
a,d-b). This illustrates a very important point. The vector from P1 to P2 is the
exact same vector as the vector from 0 to P2-P1. Two vectors that differ only by a
translation are considered equivalent.

1

2

Y

X

1 2

P=(1,2)

(0,0)

V

Vector addition is defined as follows. Let U=(u1,u2,u3) and V=(v1,v2,v3) then the
notation U+V means (u1+v1,u2+v2,u3+v3). Similarly, for 2d vectors,
(u1,u2)+(v1,v2) means (u1+v1,u2+v2).

Multiplication of a vector by a scalar is defined as follow. Given vector U and a
scalar a (a is a real number), then a××U means (a××u1,a××u2,a××u3).

Multiplication by the scalar -1 has a special notation. -1××U is written simply -U.

Vector difference is defined from the above. U-V can be rewritten U+-1*V, which
is a simple addition and a multiplication by the scalar -1 as above.

12

Multiplication of two vectors has no intuitive meaning. However, two types of
"multiplications" of vectors are usually defined, which have little relation to the
usual real number multiplication.

The first is dot product. U dot V (usually noted U•• V) yields a real number (not a
vector). (u1,u2,u3)• (v1,v2,v3) means u1××v1+u2××v2+u3××v3. Similarly for 2d
vectors, (u1,u2)• (v1,v2)≡u1×v1+u2×v2. Note that the 1d case corresponds to
normal multiplication of real numbers in a certain way.

Vectors have a length, defined as follow. The length (or module, or norm) of
vector U is written |U| and has the value of (U•• U)1/2. If the length of a vector is
one, the vector is said to be of unit length, or a unit or normal vector.
Multiplying a vector V by the scalar 1/|V| is called normalizing a vector, because
it has the effect of making V a unit vector. In the 1d case, length simplifies to
absolute value, thus the notation |U|.

Dot product is also used to define angle. U•• V=|U|××|V|××Cosθθ, where θ is the angle
between U and V. Incidentally, if |U|=1 then this simplifies to |V|×Cosθ, which is
the length of the projection of V onto U. It is of note that U•V is 0 if and only if
either θ is π/2+2kπ or |U|=0 or |V|=0. Assuming |U| and |V| are not 0, this means
that if U•V is 0, then U and V are perpendicular, or orthogonal.

The second product usually defined on vectors is the cross product. U cross V
(usually noted U××V) is defined using matrix determinant and somesuch. Basically,
(u1,u2,u3)×(v1,v2,v3) is (u2v3-u3v2, u3v1-u1v3, u1v2-u2v1).

It is demonstrable that the cross product of two vectors is perpendicular to the two
vectors and has a length of |U||V|Sinθθ. The fact that it is perpendicular has
applications which we will see later.

Exercises

Q1 - Do the following vector operations:

a) (1,3,2)+(3,5,6)

b) 1.5×(3,4,2)

c) (-1,3,0)• (2,5,2)

d) |(3,4,20/3)|

e) U•V where |U|=2, |V|=3 and the angle between U and V is 60 degrees

f) (1,2,3)×(4,5,6)

13

Q2 - Which vectors satisfy the equation U• (1,1,1)=0?

Answers

A1 - a) (4,8,8)

b) (4.5,6,3)

c) 13

d) 25/3

e) 3

f) (-3,6,-3)

A2 - All vectors that satisfy u1+u2+u3=0. Since the dot product is 0, this means
all vectors that are perpendicular to U. Incidentally, these vectors cover the whole
plane and nothing but the plane for which the normal is (1,1,1). All the vectors of
the said plane can be expressed as p(1,-1,0)+r(0,-1,1) [for example] for some real
numbers p and r. This last notation is also known as a local coordinates system for
the u1+u2+u3=0 plane.

Alcoholism and dependance

Given a set of vector U0, U1, U2, ... , Un, these vectors are said to be linearly
independent if and only if the following is true:

a0××U0+a1××U1+...+an××Un=0 implies that (a0,a1,a2, ... , an)=0.

If there exists at least one solution for which (a0, a1, a2, ...,an) is not zero, then
there exists an infinity of them, and the vector are said to be linearly dependant.

The geometric interpretation of that is as follows. In 3d, three vectors are linearly
independent if none of them are colinear and all three of them are not coplanar.
(Colinear means on the same line, coplanar means on the same plane). Any more
than 3 vectors in 3d and they are certain to be linearly dependant.

For two vectors, in 2d or 3d, they are said to be linearly independent if they are not
colinear. 3 or more vectors in 2d are always linearly dependant.

If a set of vectors are linearly independent, they are said to form a basis. 2 linearly
independent vectors form the basis for a plane, and 3 linearly independent vectors
form the basis for a 3d space.

14

The term orthogonal is very frequently used to describe perpendicular vectors. If
a basis is made of orthogonal unit vectors (unit vectors are vectors of norm 1), the
base is said to be orthonormal. Orthonormal basis are the most useful kind in
typical 3d graphics. If a basis is not orthonormal, it "skews" the space, where if the
vectors are not unit, it "stretches" and/or "compresses" the space.

Each space has a so-called canonical basis, the basis we intuitively find simplest.
For 3d space, that basis is made of the vectors (1,0,0), (0,1,0) and (0,0,1).
Similarly, the canonical basis for 2d space is (1,0) and (0,1). Note that since a basis
is a set of vectors, it would be more formal to enclose the list of vectors in curly
braces, for example, {(2,3) , (-1,0)}.

The vectors of the canonical basis are traditionally noted i, j and k for 3d space or
i and j for 2d space. This leads us to introduce another notation.

If vector (a,b,c) is said to be expressed in basis pqr, then it means that the vector
is a×p+b×q+c×r. Note that a, b and c are scalars and p, q and r are vectors, thus
this combination (formally referred to as linear combination) is defined as
discussed earlier. If pqr are ijk, this translates to a×i+b×j+c×k or
(a,0,0)+(0,b,0)+(0,0,c) or (a,b,c).

However, if pqr is not ijk, the matter is different. For example (assuming pqr is
expressed in ijk space), if p=(1,1,0), q=(0,1,1) and r=(1,0,1), then the vector
(a,b,c) in pqr space means (a,a,0)+(0,b,b)+(c,0,c)=(a+c,a+b,b+c) in ijk space.
What we just did is called a change of basis. We took a vector that was expressed
in pqr space and expressed it in ijk space.

Note: normally, to specify which space a vector is expressed in, we should write
the space in subscript. Example: as in the preceding paragraph, (a,b,c) is written
either (a,b,c)pqr or (a+c,a+b,b+c)ijk depending on whether we want it in pqr or ijk
space. This notation will help avoid many mistakes.

It would be possible for pqr to be expressed in some other base than the canonical
base. If that were the case, and if the objective would be to express vector (a,b,c)
in ijk space, then it might require several transformations to get there.

For simplicity's sake in the further parts of this document, we will extend our
definition of vectors to allow for not only real number components, but also vector
components. This means that (a,b,c)pqr expressed in pqr space (a×p+b×q+c×r) can
be written as (a,b,c)pqr•• (p,q,r)ijk.

Exercises

Q1 - Are the vectors (1,2,0), (4,2,4) and (-7,-4,-8) linearly independent?

15

Q2 - Say vector U=(1,3,2)pqr is expressed in pqr space, where pqr expressed in ijk
space is (1,2,0)ijk, (2,0,2)ijk, (0,-1,-1)ijk. Express U in ijk space.

Q3 - Using Question 2's values for p, q and r, and the vector V expressed in ijk
space as (1,1,1), can you express V in pqr space?

Answers

A1 - No

A2 - (7,0,4)ijk

A3 - (1/3, 1/3, -1/3) - this exercise is in fact called an inverse transform, which will
be described later.

On a plane (and of motion sickness)

There are several ways to define a plane in 3d. The first one I will present is useful
because it can be used to represent a plane in n dimensional space, even for n>3.

First you need two linearly independent vectors to form a basis. Call them U and
V. Then, if you take a×U+b×V for all possible values of a and b (them being real
numbers of course), you generate a whole plane that goes through the origin of
space. If you want to displace that plane in space by vector W (e.g. you want the
point pointed to by W to be part of the plane), then a××U+b××V+W will generate
the desired plane. (Proof, for a=b=0, it simplifies to W, thus the point at W is part
of the plane).

Note that the above equation can be written (a,b)•• (U,V)+W. As such it can be
viewed as a change of basis, from the canonical basis of 2d space to whatever
space U and V's basis is.

Another way for defining a plane that only works in 3d is as follows. (Note, in n
dimensional space, this will define a n-1 dimensional object). As was seen earlier, if
A•X=0, then A and X are perpendicular (A and X are vectors). Furthermore, for a
given A, if you take all X's that satisfy the equation, you get all points in a certain
plane. A is generally called normal to the plane, although the literature frequently
assumes that the normal is also of unit length, which is not necessary (though A
must not be the null vector). The values of X that satisfy the plane equation given
include X=0, since A•0=0 for any value of A. Thus, that plane passes through the
origin.

16

If one wants a plane that does not pass through the origin, one should proceed as
follows. (This uses an intuitive form of affine transformations, described in depth
later). First, find out the displacement vector K that describes the position of the
plane in relation to the origin. Thus, if you subtract K from all the points in the
plane, the plane ends up at the origin, and we can use the definition above. Thus,
the new definition of the plane is A• (X-K)=0.

To make this a bit more explicit, let A=(A,B,C) and X=(x,y,z) and K=(k1,k2,k3).
Then the plane equation can be rewritten as: A×(x-k1)+B×(y-k2)+C×(z-k3)=0. A
little algebra allows us to rewrite it as A×x+B×y+C×z=-A×k1-B×k2-C×k3. By
setting D=-A×k1-B×k2-C×k3, we can make one more rewrite, which is the final
form: A××x+B××y+C××z=D.

It is important to remember that multiplying both side of the equation by a
constant does not change the plane. Thus, plane x+y+z=1 is the same as plane
2x+2y+2z=2.

Note that in this last representation, (A,B,C) is the normal vector to the plane.
The last equation can also be re-written A•• X=D. It would also be easy to
demonstrate the following, but I will not do it. For any point P, (A•• P-D)/|A| is the
signed distance to the plane A•X=D. The sign can help you determine on what
side of the plane that the point P lies on. If it is 0, P is on the plane. If it is positive,
P is in the direction that the normal points to. If it is negative, P is on the side
opposite of the normal. This has application in visible surface determination
(namely, back face culling).

Also note that if |A|=1, then the signed distance equation simplifies to A•P-D.

It is easy to demonstrate that the equation for a line in n-space, for any integer
value of n>0, is t××U+W, where U is a vector parallel to the line and W is a point
on the line. As t takes all real values, we generate a line.

Exercises

Q1 - Given the basis U=(1,3,2) and V=(2,2,2), and the position vector W=(1,1,0),
find the position in 3d space of the point (3,2) in UV space.

Q2 - Express the plane described in Q1 in the form Ax+By+Cz=D

Q3 - Find the signed distance of point (4,2,4) to the plane using the answer for
question 2.

Q4 - Given two basis vectors for a plane, P and Q, in 3d space, and a position
vector for the plane, R, plus the direction vector of a line, M, that passes through
origin, find the pq space point of intersection between the line and the plane.

17

Answers

A1 - (8,14,10)

A2 - x+y-2z=2 (hint : remember that the cross product of U and V is perpendicular
to both U and V).

A3 - -4/(61/2)≅ -1.633 - this means that the point (4,2,4) is in the direction
opposite of (1,1,-2) from the plane x+2-2z=2.

A4 - See the perspective chapter on texture mapping.

Orthonormalizing a basis

Sometimes we might have a basis B which is meant to be orthonormal, but due to
accumulation in roundoff error in the computer, the vectors are slightly off the unit
length and not quite perpendicular. Then it is useful to have a way of finding an
orthonormal basis O from our basis B while making sure that O and B are "very
similar" in a certain sense.

The meaning of "very similar" can be made explicit easily. Let B be the basis (b1,
b2, ..., bn) for a n-dimensional space (bi's are vectors). Let O be the basis (o1, o2,
..., on). Then, we measure the "similitude" of O and B by taking Max(|oi-bi|), that
is, the greatest difference between the same vector in O and B. The closer this
number is to 0, the more similar O and B are. The method given below will
generate O from B such that the similitude is small enough (note that it will not
necessarily be the smallest possible, it will simply be small enough).

The process in n-dimensional space is as follows. Let

v1=b1

vn=bn-∑1≤i<n(bn•oi)oi

on=vn/|vn|

Then, the basis O is orthonormal and has good similitude with the basis B. (Proof
is left as an exercise. Hint: find an upper bound on the similitude as a function of
the maximum of the dot product between two vectors of the basis B and as a
function of the length of the vectors in the basis B. Proof of orthogonality comes
from examining vn closely. Unit norm of the vectors of the basis is obvious.)

Explicitly for the 3d case, this simplifies to:

o1=b1/|b1|

18

v2=b2-(b2•o1)o1

o2=v2/|v2|

v3=b3-(b3•o1)o1-(b3•o2)o2

o3=v3/|v3|

19

Matrix mathematics

Introduction

Matrices are a tool used to handle a great deal of linear combinations in a
homogeneous way. The operations on matrices are so defined as to ease whatever
task you want to do with them. Be it expressing a system of equations, or making
a change of basis, to some peculiar uses in calculus.

Normally, matrices are noted using large parenthesis and the numbers written
down in a grid-like disposition as follows. This is a generic 3x3 matrix:

M

m11

m21

m31

m12

m22

m32

m13

m23

m33

In general, a pxq matrix is noted as above with the exception that it has p rows
and q columns. The above matrix can also be written M=(mij) with i and j varying
from 1 to 3. The first index is the row number, the second index is the column
number, as in the example above.

A matrix for which p=q, such as the M matrix above, is said to be a square
matrix. There exist a particular type of square matrix called an identity matrix.
There is one such matrix for each type of square matrix (e.g. one for 1x1 matrices,
one for 2x2 matrices, one for 3x3 matrices, etc...) As an example, the 3x3 matrix is
given here:

1

0

0

0

1

0

0

0

1

Strictly speaking, the identity matrix I=(mij) is defined such as:

mij=0 if i≠j and mij=1 if i=j

Matrix operations

20

Matrix addition is defined as follows. Given 2 matrices A=(aij) and B=(bij) of
same dimension pxq, then U=(uij)=A+B is defined as being (uij)=(aij+bij).

Matrix multiplication by a scalar is defined also as follows. Given the matrix M
and a scalar k, then the operation U=(uij)=k×M is defined as uij=k×mij.

Matrix multiplication is a bit more involved. It is defined using sums, as follows.
Given matrix A of dimension pxq, and matrix B of dimension qxr, the product
C=AxB is given by:

cij=∑1≤k≤q(aik×bkj)

More explicitly, for example, we have, for A and B 2x2 matrices:

c11=a11×b11+a12×b21

c12=a11×b12+a12×b22

c21=a21×b11+a22×b21

c22=a21×b12+a22×b22

(Note: ∑1≤k≤q(aik×bkj) means "sum of (aik×bkj) for k varying from 1 to q.")

It is important to notice that matrix multiplication is not commutative in the
general case. For example, it is not true that A×B=B×A with A and B matrices in
the general case, even if A and B are square matrices. Matrix multiplication is,
however, associative (ie, A×(B×C)=(A×B)×C) and distributive (ie,
A(B+C)=AB+AC).

The identity matrix has the property that, for any matrix A, A×I=I×A=A (I is the
neutral element of matrix multiplication).

Matrix transposition of matrix A, noted AT, reflects the A matrix along the great
diagonal. That is, say A=(aij) and AT=(bij), then we have bij=aji.

There are also other interesting operations you can do on a matrix, however they
are much, much more involved. As of now, I am not willing to get too deeply into
this. The topics of interest are matrix determinant (which has a recursive
definition) and matrix inversion. I will content myself by giving one definition of
matrix determinant and one way of finding matrix inverse. Note that there are at
least a couple of different definitions for determinant, though they usually boil
down to the same thing. Also, there are many ways of finding the inverse of a
matrix, I will contend myself with presenting only one method. Strict definitions
will be given, for more extensive coverage, consult a linear algebra book.

21

Given a matrix M=(mij), of size 1x1, the determinant (sometimes written detM)
is defined as D=m11. For matrices of size nxn with n>1, the definition is recursive.
First, pick an integer j such that 1≤j≤n. For example, you could pick j=1.

D=mj1×Cj1+mj2×Cj2+...+mjn×Cjn

The Cij are the cofactors of M - they require a bit more explaining, which follows.

First let us define the minor matrix Mij of matrix M. If M is a nxn matrix, then the
Mij matrix is a (n-1)x(n-1) matrix. To generate the Mij matrix, remove the ith line
and jth column from the M matrix.

Second what interests us is the cofactor Cij, which is defined to be:

Cij=(-1)i+j×detMij

As an example, the determinant of the 2x2 matrix M is m11×m22-m12×m21, and
the determinant of a 3x3 matrix M is

D3x3= m11×(m22×m33-m23×m32)

- m12×(m21×m33-m23×m31)

+ m13×(m21×m32-m22×m31)

Given a matrix A, the inverse of the matrix, noted A-1 (if it exists), is such that A
×A-1=A-1×A=I. It is possible that a matrix has no inverse.

To inverse the matrix, we will first define the adjacent matrix of A, which we will
call B=(bij). Let Cij denote the i,j cofactor of A. Then, we have:

bij=Cij

Which completely defines the cofactor matrix B. The inverse of A is then:

A-1=(1/detA)×BT

Another method of inverting matrices, which might be preferable for numerical
stability reasons but will not be discussed here, is the Gauss-Jordan method.

Exercise

Q1 - Compute the product of these two matrices:

22

.

m11

m21

m31

m12

m22

m32

m13

m23

m33

n11

n21

n31

n12

n22

n32

n13

n23

n33

Answer

A1

.m11 n11 .m12n21 .m13 n31

.m21 n11 .m22n21 .m23 n31

.m31 n11 .m32n21 .m33 n31

.m11 n12 .m12 n22 .m13 n32

.m21 n12 .m22 n22 .m23 n32

.m31 n12 .m32 n22 .m33 n32

.m11 n13 .m12 n23 .m13 n33

.m21 n13 .m22 n23 .m23 n33

.m31 n13 .m32 n23 .m33 n33

Matrix representation & linear transformations

The following set of equations:

m11×x+m12×y+m13×z=A

m21×x+m22×y+m23×z=B

m31×x+m32×y+m33×z=C

is equivalent to the matrix equation that follows:

.

m11

m21

m31

m12

m22

m32

m13

m23

m33

x

y

z

A

B

C

It is also equivalent to the following vector equations

P=(m11,m21,m31), Q=(m12,m22,m32), R=(m13,m23,m33)

X=(x,y,z)

D=(A,B,C)

D=X• (P,Q,R)

This means that matrix can be used, amongst other things, to represent systems of
equations, but also a change of basis. Look back on the vector mathematics
chapter and you will see that D=X• (P,Q,R) literally means "transform X, which is
expressed in PQR space, in whatever space PQR is expressed in (could be ijk
space for example), the answer is labeled D."

23

The matrix form can also be written as follows:

M×X=D

This is also called the linear transformation of X by M. In this case, if the matrix
M is invertible, then we can premultiply both sides of the equality by M-1, as
follows:

M-1×M×X=M-1×D

And, knowing that M-1×M=I (and that matrix multiplication is associative as we
saw before), we substitute into the above:

I×X=M-1×D

And knowing that I×X=X, we finally get:

X=M-1×D

That is a very elegant, efficient and powerful way of solving systems of equations.
The difficulty is of course finding M-1. For example, if we know M, D but not X,
we can use the above to find X. This is what should be used to solve question 3 in
chapter "Alcoholism and dependance". For 3d graphics people, this is the single
most useful application of matrix inversion: sometimes you have a point in ijk
space, and you want to express them in pqr space. However, you don't originally
have ijk expressed in pqr space, but you have pqr expressed in ijk space. You will
then write the transformation of a point from pqr space to ijk space, then find the
inverse transformation as just described and then inverse transform the point to
find it's position in pqr space.

Another very interesting aspect is as follows. If we have a point P to be
transformed by matrix M, and then by matrix N. What we have is:

P'=M×P

P''=N×P'

By combining these two equations, we get

P''=N×(M×P)

However, by associativity of matrix multiplication, we have:

P''=(N×M)×P

24

If for instance, we plan to process a great many points through these two
transformations in that particular order, it is a great time saver to be able to first
calculate A=N××M, and then simply evaluate P''=A××P for all P's, instead of first
calculating P' then P''. In linear transformations terminology, A is said to be the
linear combination of M and N.

25

Affine transforms

Introduction

As of now, we have seen linear transformations. Linear transformations can be
used to represent changes of basis. However, they fail to take into account possible
translation, which is of top priority to 3d graphics. An affine transform is, roughly,
a linear transform followed by a translation (or preceded, though it is more useful
for 3d graphics to picture them as being followed by the translation instead).

Affine transformations

A simple proof can be used to demonstrate that a 3x3 matrix cannot be used to
translate a 3d point. Given any 3x3 matrix A and the point P=(0,0,0), then A×
P=(0,0,0), thus the point is untranslated. It is merely rotated/skewed/stretched
about the origin.

However, there is a neat trick. A linear transform in 4d space projected in a
particular fashion in 3d space is an affine transformation. Without going into the
details, a 4x4 matrix can be used to model an affine transform in 3d. The matrix
has the following form:

m11

m21

m31

0

m12

m22

m32

0

m13

m23

m33

0

Tx

Ty

Tz

1

The (mij) 3x3 submatrix is the normal rotation/skew/stretch (the linear transform
we studied previously). The (Tx,Ty,Tz) vector is added to the point after
transform. A point (x,y,z) to be transformed into (p,q,r) is noted:

.

m11

m21

m31

0

m12

m22

m32

0

m13

m23

m33

0

Tx

Ty

Tz

1

x

y

z

1

p

q

r

1

26

Another way of modelling affine transform is to use the conventional 3x3 matrix
we were using previously, and to add a translation vector after each linear
transform. The advantage of this is that we do not do unnecessary multiplications
for translation and also the bottom row of the 4x4 matrix which is (0,0,0,1) that
can be optimized out. However, the advantage of using the 4x4 matrix on the
conceptual level (not on the implementation level) is that you can then compute
affine transformation combinations and inversions, the exact same way that we
were doing in the previous section.

A very special note. Sometimes it becomes useful to distinguish vectors from
points in space. A vector is not affected by a translation, while a point is. To
illustrate our example, think of a plane and a plane's normal. Let's say we take
three points in the plane, rotate them and translate them, we get a new plane.
These points are affected by the translation and the rotation. However, the plane
normal is only affected by the rotation.

When using affine transforms with the 4x4 matrix above, a vector (x,y,z) is
represented by (x,y,z,0) and a point is represented by (x,y,z,1). This way, when
you multiply a vector by a 4x4 matrix, the translation does not affect it (try it and
you will see), while a point is affected by it.

This very important aspect gives meaning to the various operations on points and
vectors. Sums and differences of vectors are still vectors. (E.g.
(a,b,c,0)+(d,e,f,0)=(a+d,b+e,c+f,0), which is still a vector). Difference of two
points is a vector. This is very important:

(a,b,c,1)-(d,e,f,1)=(a-d,b-e,c-f,0) (a vector since the last component is 0)

Sum of two points has no meaning. (It can be given one, but for us it has no
meaning). This is illustrated this way: (a,b,c,1)+(d,e,f,1)=(a+d,b+e,c+f,2). The last
component is no 0, so it's not a vector, and it's not 1 so it's not a point. (We could
use homogeneous coordinates and give it a meaning, but this is totally
unimportant.)

Sum of a vector and a point is a point. Subtracting a vector from a point yields a
point, also.

Exercise

Prove that the sum of a vector and a point is a point and not a vector or undefined,
and prove that the difference of a point and a vector is a point as opposed to a
vector or undefined. What is the meaning if any of multiplying a point by a scalar?
a vector by a scalar?

27

Affine transform combination and inversion

The most straightforward way to compute the affine combination or inversion is to
write down the 4x4 matrices and perform the matrix operations on them. This will
yield the correct results. It is also possible to proceed in a different way, as
presented here.

Let an affine transform be represented by the (M,T) couple, where M is the 3x3
linear transform matrix and T is the 3d vector which is added after the M matrix is
applied. Then, the affine transform U of vector V can be written as:

MV+T=U

If we want to find the inverse transform, we want V as a function of U. Simple
matrix arithmetics tells us the following:

MV=U-T

V=M-1(U-T)

V=M-1U-M-1T (distributivity of matrix multiplication over matrix addition)

Hence, the inverse of affine transform (M,T) is (M-1,-M-1T).

Affine transform combinations can be computed in a similar way. Let's assume we
want to find the affine transform U of V by (M,T), then the affine transform W of
U by (N,S). This means:

U=MV+T W=NU+S

W=N(MV+T)+S

W=NMV+NT+S

W=(NM)V+(NT+S)

Thus, the combination of (M,T) followed by (N,S) is simply (NM, NT+S).

Exercise

28

Q1- Assume we have three points P={P1, P2, P3} in 3d and the three points
Q={Q1, Q2, Q3} also in 3d. These points are read from a special device and their
real location in 3d space is known with very good precision (note: this means there
is no perspective distortion in our data). We know that the points P and Q are the
very same points, except that they're viewed from a different location. This means
that the points in Q are the points in P transformed by some affine transform A.
However, we do not know which points in Q correspond to which points in P. (ie,
Q1 is not necessarily the affine transform of P1, it might be the affine transform of
P2 or P3). You can assume that the points P1, P2 and P3 form a nondegenerate
triangle whose sides all measure a different length.

Q2- We have roughly the same problem as in Q1, except now we have n>3 points
P=(P1, P2, P3, ..., Pn) and the corresponding Q=(Q1, Q2, Q3, ..., Qn). Can you
find a way to compute the affine transform while minimizing error? (Warning - this
is difficult.)

Answer

A- First step is to determine which point in Q correspond to which point in P.
Since they're the same points viewed from different angles, we can assume the
linear transform part of the affine transform is orthogonal, therefore it preserves
lengths and angles. We can use that to find which points should be associated. To
this purpose, let u=P2-P1, v=P3-P1. Then, find the i,j, k such that |u|=|Qj-Qi|,
|v|=|Qk-Qi|. Since we assumed the sides of the triangle have all different lengths,
there is only one i,j,k which will work. We can simply try all 6 combinations until
one works. Then, we know that P1 corresponds to Qi, P2 corresponds to Qj, P3
corresponds to Qj.

Now, let R1, R2, R3 be Qi, Qj, Qk respectively (this is to simplify notation a bit).
We need a third vector, which we generate as follows. Let w=u×v. Note that, as
seen in the last section, u, v and w are vectors and therefore are not affected by
translations. Let the affine transform A be represented by (M,T) a 3x3 matrix and a
3d vector. Let p=R2-R1, q-R3-R1 and r=p×q.

Then, we have that p=Mu, q=Mv, r=Mw (prove it, especially the last one).

This can be re-written as

M(u|v|w)=(p|q|r)

where (u|v|w) denotes the 3x3 matrix formed by taking the vectors u, v and w and
putting them in as column vectors. Then, we can compute W by calculating

M=(p|q|r)(u|v|w)-1 (*)

29

Now we have computed the M matrix. We need to compute the T vector. We
know that R1=MP1+T, hence T=R1-MP1 and we are done.

A2- The general outline is similar to A1, except that at step (*), instead of using
the conventional matrix inversion, we need a so-called pseudoinverse matrix,
denoted M+, which is

M+=(MTM)-1MT

This matrix is a generalization of the conventional matrix inverse. It minimizes
mean square error in overconstrained sets of equations like we have here. See [2]
for more information on this topic. Note that finding which Qi correspond to
which Pj is slightly more difficult, but a similar method can be used. Also note that
the T vector should be computed for all points and then averaged to minimize
error. Additionally, we were generating a w vector which was the cross product of
u and v. Now we might require something analogous to generate a linearly
independent component else the matrix will be degenerate and inversion will be
highly error prone. This especially if the points are suspected to be coplanar.

30

Applications of linear
transformations

Introduction

In this section we will discuss the applications of the linear transformation theory
we saw in the previous sections. When doing 3d graphics, the usual situation
occurs. We have a description of one or more objects. We have their locations and
orientations in space, relative to some point of reference. We move them around,
rotate them, usually about their own coordinate system. The camera might also be
moving, rotating and such. In that case, it is likely that we have an orientation and
position for the camera object itself. We would also like that the eye points in the
direction of (0,0,1) in camera space, and that up be (0,1,0) in camera space.

Orientation and position will be given by an affine transform matrix. The (mij)
submatrix gives orientation and the 4th column has the translation vector.

World space, eye space, object space, outer space

First off we are going to require a global system of reference for all the objects.
This is usually called "World space". An affine transform that describes an
object's position and orientation usually does so in relation to world space (this is
generally not true for hierarchical structures, as we will see later). This introduces
a new concept; a matrix A, representing an affine transform that takes an object
from space M to space N (in our example, M is object space and N is world space)
is usually noted AN←←M. This has the natural tendency to make us combine the
affine transform from right to left instead of left to right, which is correct.

The most typical example is as follows. We have an object and its affine transform
AWorld←Object. We also have a camera position and orientation given by CWorld←

Camera. In that case, the first thing we want to do is invert the transform CWorld←

Camera to find the CCamera←World transform. Then you will be transforming the points
Pi in the object with CCamera←World×AWorld←Object×Pi=MCamera←Object×Pi.

As a helper, notice that the little arrows make a lot of sense, as shown below:

31

Camera←World, World←Object, which concatenates intuitively to Camera←
World←Object or simply Camera←Object. Thus, the above transformation
transforms from object space to camera space directly. One merely calculates
MCamera←Object=CCamera←World×AWorld←Object and multiplies all Pi's with is.

Transformations in the hierarchy (or the French revolution)

It may be useful to express an object A's position and orientation relative not to the
world, but to some other object B. This way, if B moves, A moves along with it.
In plain words, if we say "The television is resting 2 centimeters above the desk on
its four legs", then moving the desk does not require us to change our "2
centimeters above the desk" position - it is still 2 centimeters above the desk as it is
moving along with the desk (careful not to drop it). On the other hand, if we had
said "The television is 1 meter above the floor" and "The desk is 95 centimeters
above the floor", and then proceed to move the desk up 1 meter, then the position
of the desk is "1m95 above the floor". Additionally, we have to edit the position of
the television and change it to "The television is 2 meters above the floor". Notice
the difference between these two examples.

This can be implemented very easily the following way. Make an affine transform
that describes orientation and position of television in relation to the desk. This is
called ADesk←Television. Then we have an orientation and position for the desk, given
by BWorld←Desk. Notice that this last affine transform is relative to world space. We
then of course have the mandatory CWorld←Camera which we invert to find the CCamera

←World transform. We then proceed to transform all points in the television to
camera space, and also all points from the desk to camera space. The former is
done as follows:

CCamera←World×BWorld←Desk.×ADesk←Television×Pi.

Notice again how the arrows concatenate nicely. The points on the desk are
transformed with this:

CCamera←World×BWorld←Desk.×Qi.

Again, the arrows make all the sense in the world.

Some pathological matrices

32

Rotating a point in 2d is fundamental. In the example above, we wish to rotate
(x,y) to (x',y') by an angle of b. The following can be said:

y'=sin(a+b)r x'=cos(a+b)r

With the identities sin(a+b)=sin(a)cos(b)+sin(b)cos(a) and cos(a+b)=cos(a)cos(b)-
sin(a)sin(b), we substitute.

y'=rsin(a)cos(b)+rcos(a)sin(b)

x'=rcos(a)cos(b)-rsin(a)sin(b)

But from figure 3 we know that

rsin(a)=y and rcos(a)=x

We now substitute:

y'=ycos(b)+xsin(b)

x'=xcos(b)-ysin(b)

Rotations in 3d are done about one of the axis. The exact rotation used above
would rotate about the z axis. In matrix representation, we write the x, y and z axis
rotations as follows:

1

0

0

0

cos θ

sinθ

0

sinθ

cos θ

cos θ

0

sinθ

0

1

0

sinθ

0

cos θ

cos θ

sinθ

0

sinθ

cos θ

0

0

0

1

(x axis) (y axis) (z axis)

These matrices can be extended to 4x4 matrices simply by adding a rightmost
column vector of (0,0,0,1) and a bottom row vector of (0,0,0,1) (e.g. the 1 in the
bottom right slot is shared by the column and the row vector).

33

If you want, you can always specify the orientation of an object using three angles.
These are formally referred to the Euler angles. Unfortunately, these angles are
not too useful for many reasons. If two angles change with constant speed, the
object will definitely not rotate with constant speed. Also, sometimes, a problem
known as gimbal lock occurs, where you suddenly lose one degree of freedom
(this looks like the object's rotation in a direction stops, to start again in another
strange direction). Furthermore, the angles are not relative to object coordinate
system nor world coordinate system.

Thus it is preferable to specify object orientation with an orientation matrix. When
rotation about a world axis is desired, the orientation matrix is premultiplied by
one of the above rotation matrices, and when a rotation about an object axis is
desired, the orientation matrix is postmultiplied by one of the above rotation
matrices. Note that it is possible to rotate about an arbitrary vector and/or
interpolate between any two given orientations when using quaternions, which is
covered in a later chapter..

34

Perspective

Introduction

Perspective was a novelty of the Renaissance. It existed a long time before but had
been forgotten by the western civilizations until that later time. As can be seen
from paintings before Renaissance, artists had a very poor grasp of how things
should appear on a painting. The edges from tables and desks were not drawn
converging to an "escape point", but rather all parallel. This gave these paintings
the peculiar feeling they have when compared to more modern, more perspective-
correct paintings.

Perspective is the name we give to that strange distortion that happens when you
take a real-life 3d scene (your garden) and take a picture of it. The flowers in the
foreground appear larger than the barn in the background. This particular effect is
sometimes referred to as foreshortening. Other effects come into play, such as
focus blur (very likely, you were either focussed on the flowers or the barn; one
looks clear, the other is very fuzzy), light attenuation, atmospheric attenuation,
etc...

We know today that light rays probably aren't moving in a straight line at all. Even
in the vacuum, they oscillate a bit. When travelling through matter, it is deviated all
the time, split, reflected and all sorts of other nonsense. Sometimes it can be useful
to model all these nice effects, however, they are not always necessary or
desirable. One thing is for sure, a perfect or near-perfect simulation of all that we
know about light today would be tremendously CPU-intensive, and would require
an incredible amount of work on the software end of the project.

In normal, day-to-day life, when you're significantly larger than an atom but
significantly smaller than a planet, light is usually pretty linear. It travels in straight
rays, only bending at discrete points that are more or less easy to calculate,
definitely more than the fuzzy way light bends in a prism.

A further simplification that we can make is that light only reflects diffusely on the
objects around you. This is usually the case, unless you come up to a highly
polished or metallic surface where you can see your reflection. But the usual desk,
bed, snake and starships are pretty dull in appearance, with perhaps a diffuse
highlight from where the light is coming from.

35

Another simplification we usually make comes from the fact that light bounces off
everything and eventually starts coming from about all direction with a low
intensity. This is often called the ambient light. Some further optimizations, more
hacks than actual physical observations, will make you go faster and still look
good.

A simple perspectively incorrect projection

The most simple projection is an affine transform from 3d to 2d, sometimes
referred to as parallel projection. As an example, the transform (x,y,z)→(x,y)
transforms the point (x,y,z) in 3d to the point (x,y) in 2d, is such a transform.
Another simple example is the (x,y,z)→(x+z,y+z) transform. The problem with this
is, no matter how far or close in z the object is, it always appears the same size on
the screen. This, or a variant of this, is true for all of the parallel projections. These
projections are called parallel because parallel lines in 3d remain parallel once
projected in 2d. The image below is a parallel projected cube:

The perspective transformation

36

The perspective transformation (or perspective projection) is incredibly simple
once you know it, but it is often good to know where it comes from. We will put
to use some of the assumptions we previously stated.

The first assumption we made is that light goes in a straight line. This is great
because it will allow us to make maximum use of all the linear math we have learnt
since high-school.

What we have to realize is, for the eye to see an object, light has to travel from the
object to the eye. Since light travels in a straight line, it has to either go straight to
the eye or bounce off a few reflective surfaces before getting there. However, since
we are assuming there are no such reflective surfaces in the environment, the only
possibility left is that the light comes straight from the object to the eye. This line is
formally referred to as a projector.

Another way doing it is the exact inverse. Starting from the eye, shoot a ray in a
direction until it hits something. That is what you are seeing in that direction.

Obviously, we are not going to shoot an infinite number of rays in all direction, we
would never even start generating an image if we did that. The usual
approximation is to shoot a finite amount of rays spread over an area in an
arbitrary manner.

There is another matter that needs to be taken care of. In reality, the image will be
sent to screen, paper or some other media. This means that, in our model, the light
does not reach the eye, it stops at the screen or paper, and that is what we display,
so that reality takes over for the rest of the way and carries real light rays from the
screen to the real eyes. This poses a problem of finding where the light rays
intersect the screen or paper.

Using the material in the previous section, we are able to transform all objects to
camera space, where forward is (0,0,1) and up is (0,1,0) and the eye is at (0,0,0).
We still do not know where in space the screen lies. We will have to make a few
more assumptions, that it is in front of the eye, perpendicular to the eye direction
which is (0,0,1), and flat. The distance at which it lies is still undecided. We will
just work with the constant k for the distance, then see what value of k interests us
most. The eye is formally referred to as center of projection, and the plane the
surface of projection.

37

Since it is flat, it lies on a plane. The plane equation in question is Ax+By+Cz=D
as seen before, where (A,B,C)=(0,0,1) is the plane normal. Thus the plane
equation is z=D. The distance from the eye is thus D, and we want it to be k, so
we set D=k. The plane equation is therefore z=k. We set a local basis for that
plane with vectors i=(1,0,0) and j=(0,1,0) and position W=(0,0,k). The plane
equation is thus (a,b)• (i,j)+W. (a,b) are the local coordinates on the plane. They
happen to correspond to the (x,y) position on the plane in 3d space because (i,j)
for the plane is the same as (i,j) for the world.

The question we now ask ourselves is this: given a point that is reflecting light, say
point (x,y,z), what point on screen should be lit that crosses the light ray from
(x,y,z) to the eye, which is at (0,0,0).

Here we will use the definition of the line in n space we mentioned before (namely,
tV+W). Since the light ray goes from (x,y,z) to (0,0,0), it is parallel to the vector
(x,y,z)-(0,0,0)=(x,y,z). Thus, we can set V=(x,y,z). (0,0,0) is a point on the line, so
we can set W=(0,0,0). The line equation is thus t(x,y,z).

We now want the intersection of the line t(x,y,z) with the plane z=k. Setting t=k/z
(assuming z is nonzero), we find the following: k/z(x,y,z)=(k×x/z,k×y/z,k). This
point has z=k thus it is in the plane z=k, thus it is the intersection of the plane z=k
and the line t(x,y,z).

Trivially from that, we find that the point (a,b) on screen are (k×x/z,k×y/z). Thus,

(x,y,z) perspective projects to (k××x/z, k××y/z).

A small note on aspect ratios. Sometimes, a screen's coordinate system is
"squished" on one axis. In this case, it would be wise to "expand" one of the
coordinates to make it larger to compensate for the screen being squished. For
example, if the screen pixels are 3/4 as wide as they are high, it would be wise to
multiply the b component of screen position by 3/4, or the a component by 4/3.
This can be computed using 2 different values of k instead of the same. For
example, use k1=k and k2=ratio*k. Then, the perspective projection equation is:

(x,y,z) perspective projects to (k1××x/z, k2××y/z).

Referring again to physics, only one point gets to be projected to a particular point
on screen. That is, closer objects obscure objects farther away. It will thus be
useful to do some form of visible surface determination eventually. Another special
case is that anything behind the eye does not get projected at all. Thus, if before
the projection, z≤0, do not project. The image below is a perspective projected
cube. Compare with the parallel projected cube of the preceding section.

38

Theorems

The following theorems are not always entirely obvious, but they are of great help
when doing 3d graphics. I will attempt to give the reader rough proofs and
justifications when possible, usually they will be geometrical proofs for they are
much more natural in this case. These proofs are not very formal, but formal
proofs are not hard to find, just much less natural.

A line in 3d perspective projects to a line in 2d. However, line segments sometimes
have erratic behavior. The proof is as follows. If the object to project is a line, then
the set of all projectors pass through the center of projection, which is a point, and
the line. Since projector are linear, they all belong to the plane P defined by the line
and the point. Thus, the projection will lie somewhere in the intersection of the
plane P and the projection plane. However, the intersection of two planes is
generally a line. Here follows the exception.

If the planes are parallel, since the projection plane does not pass on the eye, they
are necessarily disjoint. The projection in this case is nothing.

A line segment generally projects to a line segment. First, the only portion of the
line segment that needs to be projected is the portion for which z>0, as seen
previously. If the segment crosses z=0, it should be cut at z=0, and only the z>0
section kept. Second, the projectors for a line segment all lie in a scaled up triangle
which intersects the projection plane in a particular way, and the intersection of a
triangle and a plane is always a line segment.

Next proof is the proof that a n-gon (a n-sided polygon, example, triangles are 3-
gons, squares are 4-gons, etc...) projects to a n-gon. It can be demonstrated that
any polygon can be triangulated in a finite set of triangles, so the proof is kept to
triangles only. Also, if the n-gon crosses z=0, it should be cut at z=0, and only the
z>0 section kept.

A triangle projects to a triangle. The projectors of a triangle all lie in an infinitely
high tetrahedron, and the intersection of an infinitely high tetrahedron and the
projection plane, in the non-infinite direction is always a triangle.

39

In a similar line of thought, the set of all projectors of a sphere form a cone. The
intersection of the cone with the projection plane can form any conic. Namely, a
hyperbola, an ellipse or a circle. If the sphere contains the origin, the projection
fills the whole projection plane.

Other applications

By not losing sight of the idea behind the projection, one can accomplish much
more than what has been just described. One example is texture mapping. Often, a
polygon will be drawn on screen, but some properties of the polygon (say color for
example) changes across the polygon in 3d space. When this happens, we want to
know what point from the polygon we are currently drawing. An application of
this is texture mapping.

Texture mapping involves taking the point on screen, finding the projector that
goes through it and finding the intersection of that projector with the polygon. We
then have a point in 3d space. However, it is usually much more useful to make a
local 2d coordinate system for the plane containing the polygon and make the
property a function of the location in that 2d coordinate system. This is what I did
below in the snapshot of the screen from my math software.

40

Let (u,v) be the coordinates on the projection plane, (p,q) the coordinates on the projected plane,

(Xp,Yp,Zp) and (Xq,Yq,Zq) the two vectors defining the plane, (A,B,C) the origin of that plane and the

projection x=k1*z*u, y=k2*z*v. Then, the intersection of the projection ray and the projected plane in

the projected plane's coordinate system (p,q) in function of the projection plane coordinate system

(u,v) is:
z .p Zp .q Zq C

..k1 z u .p Xp .q Xq A

..k1 ().p Zp .q Zq C u .p Xp .q Xq A Equation A

..k2 z v .p Yp .q Yq B

..k2 ().p Zp .q Zq C v .p Yp .q Yq B Equation B

Now, let's solve for p then for q.

..k1 ().p Zp .q Zq C u .p Xp .q Xq A

p=
()...k1 u q Zq ..k1 u C .q Xq A

()..k1 Zp u Xp

..k2 ().p Zp .q Zq C v .p Yp .q Yq B

q=
()...k2 v Zp A ...k2 v C Xp ...Yp k1 u C .Yp A ...B k1 Zp u .B Xp

()...k2 v Zp Xq ...k2 v Zq Xp ...Yp k1 u Zq .Yp Xq ...Yq k1 Zp u .Yq Xp

()..().Zp A .C Xp v k2 ..().Yp C .B Zp u k1 .B Xp .Yp A

()..().Yp Zq .Yq Zp u k1 ..().Zp Xq .Zq Xp v k2 .Yp Xq .Yq Xp

Similarly,

p=
()...k1 u Zq B ...k1 u C Yq ...Xq k2 v C .Xq B ...A k2 v Zq .A Yq

()...k2 v Zp Xq ...k2 v Zq Xp ...Yp k1 u Zq .Yp Xq ...Yq k1 Zp u .Yq Xp

()..().Zq B .C Yq u k1 ..().Xq C .A Zq v k2 .A Yq .Xq B

()..().Yp Zq .Yq Zp u k1 ..().Zp Xq .Zq Xp v k2 .Yp Xq .Yq Xp

As can be quite plainly seen above, the equations for p and q above are of the
form:

p=(Du+Ev+F)/(Au+Bv+C)

q=(Gu+Hv+I)/(Au+Bv+C)

Notice that the denominator is the same for both p and q. The values for the
coefficients A through I can be found by examining the snapshot of the math
software screen above.

41

Constant Z

There is one specific case that might be especially interesting, given slow division
but fast addition. The plane equation for a polygon is Ax+By+Cz=D. The
projection is u=k1x/z, v=k2y/z. Then, we get x=uz/k1, y=vz/k2. By substituting
this into the plane equation of the polygon, we find A(uz/k1)+B(vz/k2)+Cz=D.
Then, we transform as follows:

z(A'u+B'v+C)=D (A'=A/k1, B'=B/k2)

Let us examine what happens when we look at a slice of constant z in the
polygon's plane.

k(A'u+B'v+C)=D

Mu+Nv+K=0 (M=kA', N=kB', K=C-D)

This is a line equation in (u,v) space. This means that, assuming non degenerate
cases, a constant z slice of the polygon's plane projects to a line in the projection
plane. Furthermore, and interestingly enough, the slope of the line is independent

of z. Therefore, for a given polygon plane, all the constant-z lines of that plane
project to parallel lines on screen. However, looking back at the Ax+By+Cz=0,
taking a constant z, we get a line equation of x and y, therefore, the intersection of
a constant z plane with the polygon plane is also a line.

Now let's examine the projection equation. Let us assume that we wish to project
everything that's on a specific constant-z line of the polygon. Then, the projection
equation is simply u=Px, v=Qy, where P=k1/z, Q=k2/z, constants.

This is what it all boils down to. In any polygon, there are lines of constant z. If we
want to texture map the polygon, we only need to find these lines and draw them
on screen, merely scaling the texture for such lines by a constant. Since all these
lines are parallel on screen, it is possible to find the slope the line on screen that
will yield a constant z on the polygon's plane, and then draw to the screen using
these as scanlines. One has to be careful to cover each pixel, but that is not too
difficult.

As an example, a wall's constant-z lines are vertical once projected (assuming
we're looking at it upright). A floor or ceiling's constant-z lines are horizontal once
projected. This can be exploited to texture map floors, ceilings and wells very
quickly.

Texture mapping equations revisited

42

We derived the texture mapping equations using the intuitive math above, and got
nasty looking rational expressions with even nastier coefficients (the constants A,
B, C, D, E, F, G, H and I). In practice it might be useful to try to find an efficient
way of computing these constants.

There is a clever way to calculate these constants, but first we have to write down
a few properties. First let us observe that our texture map is an affine mapping
from our (x,y,z) 3d space to the (p,q) 2d texture map, which means that:

1- p=P1×x+P2×y+P3×z+P4

q=Q1×x+Q2×y+Q3×z+Q4

(for some P1, P2, P3, P4, Q1, Q2, Q3, Q4).

Second, assume that the plane equation of the polygon to be texture mapped is
given by

2- Ax+By+Cz=D (where (A,B,C) is the plane's normal, of course)

Third, write down the perspective projection:

3- (u,v)=(k1x/z,k2x/z)

From 3, get (x,y) as a function of u, v and z:

3a- (x,y)=(uz/k1, vz/k2)

Substitute x and y into the equation we had in 1 and 2 to get:

4- p=P1uz/k1+P2vz/k2+P3z+P4

q=Q1uz/k1+P2vz/k2+P3z+P4

5- Auz/k1+Bvz/k2+Cz=D

Now divide 4 across by z, get:

6- p/z=P1/k1×u+P2/k2×v+P3+P4/z=R1×u+R2×v+P3+P4/z

q/z=Q1/k1×u+Q2/k2×v+Q3+Q4/z=S1×u+S2×v+Q3+Q4/z

From 5, find 1/z, get:

7- 1/z=(A/(D×k1))×u+(B/(D×k2))×v+(C/D)=Mu+Nv+O (*)

Look at 7 and compute P4/z and Q4/z by multiplying across by P4 and Q4
respectively:

43

8- P4/z=P4×Mu+P4×Nv+P4×O

Q4/z=Q4×Mu+Q4×Nv+Q4×O

Substitute these two equations into 6 and get:

9- p/z =R1×u+R2×v+P3+P4×Mu+P4×Nv+P4×O

=(R1+P4×M)×u + (R2+P4×N)×V + (P3+P4×O)

=J1×u+J2×v+J3 (**)

(similarly)

q/z =K1×u+K2×v+K3 (***)

Now examine (*), (**) and (***). These are all linear expressions in (u,v). This
means that:

• 1/z is linear in screen space (u,v) after the perspective transform

• p/z is also linear in screen space after perspective transform

• q/z is also linear after perspective transform

Which leads us to the following conclusions: we can interpolate linearly 1/z across
the screen for a polygon, and that will be perspective correct. We can linearly
interpolate p/z across the screen for a polygon, and that will also be perspective
correct. We can interpolate linearly q/z across the screen for a polygon and that
will also be correct. Then, we can find the (p,q) texture coordinate of any texel as
follows:

p= (p/z) / (1/z)

q=(q/z) / (1/z)

A simple quotient of our linearly interpolated values.

This simply allows us to use maybe already existing linear interpolation routines to
figure out the perspective correct texture mapping, with only a simple tweak
added.

Bla bla

44

Other applications can also be found to the theory of the perspective projection. A
popular application is for the rendering of certain types of space partitions,
popularly referred to as voxel spaces. Start with a short vector in the direction you
want to shoot the light ray, and start at the eye. Move in short steps in the
direction of the light ray until you hit an obstacle, and when you do, color the
screen point with the color of the obstacle you hit.

Basically, everything flows from the idea of this projection.

Reality strikes

In reality it is impossible to shoot enough projectors through points to cover any
area of the projection plane, no matter how small. The compromise is to accept an
error of about one pixel, and shoot projectors only through pixels. This means you
might entirely miss things that project to something smaller than a pixel, or
incorrectly attribute them a whole pixel. These details become important in quality
rendering. In that case, steps have to be taken to ensure that sub-pixel details have
some form of impact on the global outlook of the image. Different techniques can
be used which will not be described here.

Another thing we're going to do is only project the vertices of lines and polygons
and use the theorems we found earlier to figure out the aspect of the projected
object. For example, when projecting a triangle, the projection is the triangle that
passes through the projection of the vertices of the unprojected triangle. However,
these projected vertices will very likely not fall on integer pixel values. In this case,
you have the choice of either rounding or truncating to the nearest pixel, or taking
into account sub-pixel accuracy for vertices in your drawing routine. The former
can be easily done, the latter is a much more involved topic which will not be
discussed.

The state of things as they are at the moment of this writing makes the texture
mapping equations a bit too expensive at 2 divisions per pixel. On most processor
today, division is usually significantly slower than multiplication, and multiplication
itself is significantly slower than addition and subtraction. This is expected to
change in the near future however. In the mean time, one can use interpolations
instead of exact calculations. These are discussed in the next section.

45

Note that the operations X=A/C and Y=B/C can be replaced by the operations
T=1/C, X=T×A, Y=T×B. This essentially replaces two division by one division
and two multiplications, which can sometimes be actually faster. This exploits the
fact that the denominators are the same, just as in texture mapping. Additionally,
the T=1/C computation can be implemented using a lookup table. Or logarithm
tables can be used, by noting that a×b=exp(log(a)+log(b)) and a/b=exp(log(a)-
log(b)), replacing a multiplication or division by three lookups and an add or
subtract. All these tricks have been used at some time or other. They all have the
disadvantage of being less precise and taking up memory. Moreover, as CPUs
become faster at math, these method are actually slower than a normal division
operation (example, PowerPC). As such, these methods are quickly becoming
obsolete, except on legacy hardware such as all PC's which use Intel CPUs.

46

Interpolations and approximations

Introduction

Frequently in computer graphics, calculations require too much processing power.
When this problem arises, many solutions are at hand. The most straightforward
solution is to completely forget about whatever causes the lengthy calculations.
However, that might not be satisfying. The second most straightforward solution,
in a certain sense, is to get faster hardware and contend with slower image
generation. That still might not be satisfying. If this is the case, the only solution
left to us is to approximate.

Generally speaking, given a relatively smooth function of x over a finite range, it is
usually possible to approximate it with another, easier to compute function over
the same range. Of course, this will generate some form of error. Ideally, we
should pick the approximating function as to minimize this error while conforming
to whatever constraints we may impose. However, minimizing error is not always
straightforward, and it is also usually preferable to find a good approximating
function quick than the best approximating function after complicated
computations. (In the latter case, we might as well not approximate.) Error
computation is a rather complicated topic, and I do not wish to get involved with it
in here. For the more formally oriented reader, one popular definition of error
between f(x) and g(x) is ∫(f(x)-g(x))2dx, the integral is to be taken over the interval
over which g(x) is to approximate f(x).

One of the more popular type of approximating functions are polynomials, mainly
because they can usually be computed incrementally in a very cheap and exact
manner. Fourier series are generally not useful because trigonometric functions
cannot be computed very quickly. A very nice way of generating an approximating
polynomial is to use the Taylor series of the function we want to approximate,
assuming we have an analytical form of the said function.

Polynomials will be used to approximate everything from square roots to texture
mapping to curves.

Forward differencing

47

Forward differencing is used to evaluate a polynomial at regular intervals. For
example, given the polynomial y=a×x+b, which is a line, one might want to
evaluate it at every integer value of x to draw a line on screen.

We must of course initially compute y(0)=a×0+b, or y(0)=b. But then, we can
exploit coherence. Coherence is something that occurs just about everywhere in
computer graphics, and exploiting it can tremendously cut down on the
computations.

The next value we are interested in is y(1). But, y(1)=y(0)+y(1)-y(0). (Notice that
the y(0)'s cancel out). However, y(1)-y(0)=a. Thus, y(1)=y(0)+a. Furthermore,
y(2)-y(1)=a, thus we can add a to y(1) to find y(2) and so on. Generally speaking,
y(n+1)-y(n)=[a×(n+1)+b]-[a×n+b]=a.

This extends to higher order polynomials. As an example, let's do it on a second
degree polynomial, and in a more formal manner. We will suppose a step size of k
instead of 1 for more generality, and the following generic polynomial:

y=Ax2+Bx+C

First, let's find y(n+k)-y(n) as we did before:

y(n+k)-y(n)=[A(n+k)2+B(n+k)+C]-[An2+Bn+C]

=[An2+2kAn+Ak2+Bn+kB+C]-[An2+Bn+C]

=2kAn+Ak2+kB

Let's call that last result dy. Thus, y(n+1)=y(n)+dy(n). Now the problem is
evaluating dy(n). However, dy(x) is itself a polynomial (first order; a line), so
forward differencing can also be applied to it. We thus need dy[n+k]-dy[n], which
is simply 2k2A.

Concretely, this is what happens. Let's say we have the polynomial x2+2x+3 with a
step size of 4 over the range 3-19, inclusively. We thus have A=1, B=2, C=3. We
calculated dy(x) to be 2kAx+Ak2+kB=2*4*1*x+1*42+4*2=8x+24.

First of all we calculate the initial values for y and dy, which are y(3)=18 and
dy(3)=48. The incremental value for dy is 2kA=32. Then, we proceed as follows:

Value of...

x y(x) dy(x)

3 18 48

(as initially calculated - now add dy(x) to y(x), 32 to dy(x) and 4 to x)

48

7 66 80

(once more, add dy(x) to y(x) and 32 to dy(x) and 4 to x)

11 146 112

(etc...)

15 258 144

19 402 176

These can be extended to certain multi-variable polynomials also. Typically,
however, the simple fact that the polynomial can be incrementally evaluated across
a scanline is sufficient. Bilinear interpolations (r=Ap+Bq+C) are a special case of
multi-variable polynomials which can be evaluated especially well in an incremental
fashion. These occur naturally when interpolating texture coordinates linearly or
Gouraud shading across a triangle.

Approximation function

Finding the approximation function is the real problem. When trying to
approximate a function, we usually want to minimize error measure in some
specific way. However, sometimes additional constraints have to be taken into
account. For example, when interpolating values across polygons, care should be
taken that they are interpolated in a way that does not cause too much contrast
and/or mach banding along the edges shared by more than one polygon.

One of the more obvious ways of generating an approximation polynomial is to
make a Taylor series expansion of whatever function you want to approximate
and only use the first few terms (Taylor series is taught in Calculus and is beyond
the scope of this text). This, however, does nothing about the edge constraint we
just mentioned. However, Taylor series do just fine, for example, for normalizing
vectors that are supposed to be normal but due to error buildup aren't. The
problem with normalizing a vector is that vector (a,b,c) has a norm of
N=(a2+b2+c2)1/2, and that the normalization of (a,b,c) is 1/N × (a,b,c). Usually,
extracting a square root is very long, and a division is also longer than a
multiplication. It would be nice if we could find an approximation of 1/sqrt(x) and
multiply by that instead. Actually, the two first terms of the Taylor series
expansion of 1/sqrt(x) about 1 are:

1/sqrt(x)≅ (3-x)/2 (around x≅ 1)

49

The division by two can be accomplished with a bit shift, and subtraction is usually
fairly fast on any CPU. Using x=a2+b2+c2, we can find 1/sqrt(x) much faster than
otherwise.

The picture above demonstrates what happens when one approximates a value that
varies smoothly across faces with a Taylor series. The upper half of the picture
shows a square for which the intensity of a pixel (x,y) is 1/x. The leftmost pixels
have x=1 (intensity 1), and the rightmost pixels have x=3 (intensity 1/3). The lower
half shows two Taylor approximations. The first Taylor series expansion was done
around x=1, the Taylor polynomial is thus 4-6x+4x2-x3. This corresponds to the
lower left square. As can be seen, near the left edge, the Taylor series is nearly
perfect. Near x=2, though, it goes haywire. The bottom right square is a Taylor
series expansion about x=2 (the polynomial is 2-3/2x+1/2x2-1/16x3). As can be
seen, it is much closer to the real thing, but that's only because 1/x becomes more
and more linear after that point. But things that are linear after the perspective
transform are the exception rather than the rule.

The moral of this story is that if two faces are next to each other, and that the
shading (or any other property) is really a continuous function, but we
approximate it using Taylor series about arbitrary points, it is very easy to get
something that does not look continuous at all.

Thus, it would be unwise to do a Taylor series expansion of texture mapping
equations, or Phong shading and the like. Note that a property that varies with 1/x
is not a rare thing in computer graphics because of the perspective transform, thus
the example is very relevant.

A theorem of analysis that interests us is as follows. Given n points in the plane
(assuming none have the same x coordinate), there is a unique polynomial that
passes through all these points. This polynomial can be found using the linear
mathematics we were using previously. Here follows an example with a second
degree polynomial.

50

Let's say we want to find the quadratic polynomial that goes through the points
(x0,y0), (x1,y1) and (x2,y2). We know the polynomial is of the form
Ax2+Bx+C=y. We rewrite all these constraints as the following equations:

Ax02+Bx0+C=y0

Ax12+Bx1+C=y1

Ax22+Bx2+C=y2

This can be re-written as the following matrix equation:

.

x0
2

x1
2

x2
2

x0

x1

x2

1

1

1

A

B

C

y0

y1

y2

Which can in turn be re-written as X×A=Y. Notice that X and Y are constant.
Then we solve for A, writing

A=X-1×Y

Different types of constraints can be put on the polynomials or its derivative(s),
yielding different types of polynomials. The subject of interpolation is quite
extensive and will not be fully discussed here.

51

Polynomial Splines

Introduction

In this section, I will have to assume a basic knowledge of calculus. Note that the
topic of spline is rather broad, hence only the basics will be covered here. For a
more detailed discussion, one can see [5].

Sometimes we have many control points (10, for example) that we want to use to
generate an interpolating polynomial. However, we might not want to use a 10th
degree polynomial for several reasons. They're hard to evaluate. They're
numerically unstable. They tend to oscillate wildly between control points.

To resolve this, we make lower degree interpolating polynomials for each section
of the curve. Typically, polynomials of degree 1 (lines), 2 (quadratics) or 3
(cubics) are used. Polynomials of degree higher than 5 are unwieldy and also
sometimes exhibit undesirable behavior.

Basic splines

A spline will be defined by its type and a list of control points of the form {p1, p2,
p3, ..., pn} where pi=(xi,yi) some point in 2d space. The type can be a simple line
segment joining each control points, or something more complex like a Catmull-
Rom cubic spline. Note that a spline does not necessarily pass through all
interpolation points. It is even possible that a spline does not pass through any of
the control points. We will examine such cases later.

We will start by an example spline of degree 1 that interpolates through all control
points. An example picture is shown below:

52

In the diagram, the points pi are ordered from left to right, and this is what will
happen most of the time, though it is not necessary for now.

The spline is made up of 5 spline segments, which are line segments in this
particular case. Let's look at the first segment that goes from p1 to p2. We can
easily find the equation of that line using basic algebra. Remember that p1 is the
point (x1,y1) and p2 is the point (x2,y2). The spline segment, since it is a line, is of
the form y=mx+b. This line segment goes through p1 and p2, hence these two
equations have to verify:

y1=mx1+b

y2=mx2+b

We have two equations and two unknowns (m and b), so we can solve for m and
b. Note that this equation can be represented in matrix form:

y1

y2
.

x1

x2

1

1

m

b

This form will be more interesting for higher degree splines, so we will use this
notation from now on. Using linear algebra, we can solve to the (m,b) column
vector above and we then know the spline segment from p1 to p2. One of the
many problems with this spline is that it's not very smooth. How do we express
smoothness? We use the principle of continuity.

A curve is said to be in C1 continuous if its first derivative is continuous. A curve
is in C2 if its second derivative is continuous. Generally speaking, a curve in Cj's
jth derivative is continuous. For completeness, we let C0 be the family of curves
which are continuous.

Smoothness can be expressed as continuity. The spline we made above is in C0,
but not in C1. (Indeed, at control points, the slope changes abruptly, hence the first
derivative is not continuous).

53

A very important note: all polynomials are in C∞, that is, they can be differentiated
infinitely many times. Therefore, if our spline is made of one polynomial, it is
inherently very smooth. The problem is, splines aren't exactly polynomials, they're
polynomial segments glued together. However, if you look only at one segment of
the curve, excluding its endpoints, then it's in C∞. Therefore, the only thing that
might make it less than C∞ is what happens at the endpoints of curve segments.

To illustrate this, we will now create a quadratic spline which is in C1. Since we
will be using this spline repeatedly in our examples, we will name it the Zed
splineThis is how we define the curve segment from p[i] to p[i+1]:

1- the quadratic goes through p[i]

2- the quadratic goes through p[i+1]

3- at p[i], the slope is the same as whatever the previous spline segment has at that
point.

Assume the previous curve segment was y=A[i]x2+B[i]x+C[i]. Then, the
derivative of that curve segment is:

y'=2A[i]x+B[i]

And at p[i], the derivative is:

y'[i]=2A[i]x[i]+B[i]=K (*)

The new curve segment is y=A[i+1]x2+B[i+1]x+C[i]. It goes through p[i] and
p[i+1] hence:

y[i]=A[i+1]x[i]2+B[i+1]x[i]+C[i+1]

y[i+1]=A[i+1]x[i+1]2+B[i+1]x[i+1]+C[i+1]

Its derivative at y[i] is

y'[i]=2A[i+1]x[i]+B[i+1]=K (K comes from (*))

We can re-write these three equations as:

y
i

y
i 1

K

.

x
i

2

x
i 1

2

.2 x
i

x
i

x
i 1

1

1

1

0

A
i 1

B
i 1

C
i 1 ♦

Then we can solve for the (A,B,C) vector.

54

There is still the question of generating the very first spline segment, since there is
no such thing as "previous spline segment's slope at p[1]" (we'll have a hard time
computing K). One solution is to let the first spline segment be a quadratic that
interpolates through p[1], p[2] and p[3] exactly. Then the second curve segment
will maintain the same slope as the first curve segment at p[2], and interpolate
through p[2] and p[3].

Parametrized splines

As of now, our splines are functions, that is, they cannot curl backwards very
easily. Infinite slopes are impossible. That and other things lead us to parametric
splines.

Right now, we have y as a function of x. We will now replace this with y a
function of t, and x a function of t. Then we plot all points (x,y) for some values of
t and we get the desired spline. We use t as a variable name because it can
sometimes be useful to think of the spline as an (x,y) point moving in time. For
example, a spaceship's movement could possibly be described as
(x,y,z)=(f(t),g(t),h(t)), a function of time for each coordinate. The key point here is
that this allows us to extend splines to any number of dimensions elegantly.

The control points are now of the form (x,y,t) or (x,y,z,t), depending on the
number of dimensions we want. A parametric quadratic spline segment in 2d, for
instance, would be something of the form:

x=At2+Bt+C

y=At2+Bt+C

We just take each component individually and make it a spline as a function of
time. For example, if we have the control points (x0,y0,z0,t0) (x1,y1,z1,t1), ...,
(xn,yn,zn,tn). Then, we look at x as a function of t, and make it a spline with the
control points (x0,t0), (x1,t1), (x2,t2), ..., (xn,tn). We do the same for y as a function
of t, with the control points (y0,t0), (y1,t1), ..., (yn,tn), and similarly for z as a
function of t.

Uniform splines

55

Uniform splines are a special breed of splines which the control points are regularly
spaced in a special way. That is, a spline of the form (x,f(x)) where the control
points are (0,y0), (1/(n-1),y1), (2/(n-1),y2), ..., (1,yn) are called uniform. Notice
that the control points x components are uniformly distributed between 0 and 1.

Uniform splines have special uses. When we want to specify an object's position at
an instant with a parametric spline, we want to be able to specify the t component
exactly. However, when we're more interested in the shape of the spline, the t
component matters less and we use uniform splines.

Now look back at the equation marked ♦ for the Zed spline a few pages back. In
the case of a uniform Zed spline, we can substitute the values x0=0 and x1=1,
since there are but two control points. Then we get:

A

B

C

.

0

1

0

0

1

1

1

1

0

1 y
i

y
i 1

K

=

0

1

0

0

1

1

1

1

0

1
1

0

1

1

0

0

1

1

0

=M G

y
i

y
i 1

K

A

B

C

.M G

The column vector G is called the geometry vector. The product of M and G can
be viewed as a linear transformation of the vector G, thus the matrix M is called
the basis matrix for the Zed spline. A basis matrix completely defines a uniform
spline type, and along with a geometry vector, it defines completely a specific
spline.

To illustrate a few additionnal properties, we need a second type of quadratic
spline. We will call it the Baker spline, and it is defined by two control points p0
and p1, and a constant J as follows:

1- The spline interpolates through p0

2- The spline has a slope of J at p0

3- The spline has, at x1, a slope of whatever slope the vector p1-p0 has

Now, let us see what these three constraint imply. First, let us notice that since it is
a quadratic spline, it is of the form y=Ax2+Bx+C. Hence, y'=2Ax+B. Then:

1- means that y0=Ax02+Bx0+C. Since the spline is uniform, x0=0 and y0=C.

56

2- means that J=y'(x0) or J=2Ax0+B or J=B

3- The slope of p1-p0 is m=(y1-y0)/(x1-x0)=(y1-y0)/1. We want
m=y'(x1)=y'(1)=2A+B. Hence, y1-y0=2A+B

Combining these, we find that

2A+B=y1-y0

2A=y1-y0-J

A=y1/2 - y0/2 - J/2

We can write this in matrix form as:

A

B

C

.

1

2

0

1

1

2

0

0

1

2

1

0

y
0

y
1

J

N

1

2

0

1

1

2

0

0

1

2

1

0

N is the basis matrix for the uniform Baker spline. Now, given a specific geometry
vector for a Baker spline, maybe we want geometry vector for a Zed spline which
will generate the exact same spline. This is computed using a change of basis. Let
M be the Zed spline basis matrix, N is the Baker spline basis matrix, V is the
geometry vector for the Baker spline and G is the geometry vector for the Zed
spline. K is the (A,B,C) vector of the coefficients of the quadratics. Then we have
these equations:

K=MG or G=M-1K

K=NV

Therefore,

G=M-1(NV) or G=(M-1N)V

Let L=M-1N then

G=LV

57

L is called the transition matrix from Baker spline to Zed spline. This is all nothing
but linear algebra. L is a transform from one space to another space, there is
nothing more to it.

Examples

Here follows an example calculation for one segment of a parametric nonuniform
quadratic spline. Note that this spline is not of the Zed type. This is merely a
parametric quadratic spline which interpolates through all 3 control points.

x
1

x
2

x
3

.

t
1

2

t
2

2

t
3

2

t
1

t
2

t
3

1

1

1

J
1

J
2

J
3

y
1

y
2

y
3

.

t
1

2

t
2

2

t
3

2

t
1

t
2

t
3

1

1

1

K
1

K
2

K
3

x .J
1

t
2 .J

2
t J

3
y .K

1
t
2 .K

2
t K

3

These are all the equations we need. Next, given the control points x1, x2 and x3, y1, y2 and y3 at

times t1, t2 and t3, we can solve for J and K.

J
1

J
2

J
3

.

t
1

2

t
2

2

t
3

2

t
1

t
2

t
3

1

1

1

1

x
1

x
2

x
3

Similarly for K. Now let us give ourselves sample control points:

x ()0 2 1 y ()2 3 5 t ()1 4 5

x .5

12
t
2 .11

4
t

7

3
J

5

12

11

4

7

3

K

5

12

7

4

10

3

y .5

12
t
2 .7

4
t

10

3

Now, let us plot the spline:

58

And now, an example Baker spline.

59

The uniform Baker spline will be defined by its geometry vector V:

That is, p1=(0,1), p2=(1,3) and slope at p1 is .5. Slope at x=1 will be the slope of p2-p1,

or 2.
V

1

3

.5

A

B

C

.

1

2

0

1

1

2

0

0

1

2

1

0

1

3

.5

0.75

0.5

1

The spline is defined by the quadratic y=Ax^2+Bx+C:

y ..75 x
2 ..5 x 1

0 1 2
1

2

3

..75 x
2 ..5 x 1

x

Note that the spline goes trough p0=(0,1) and apparently has a

slope of 2 at x=1. This is verified because y'=1.5x+.5, thus y'(1)=2.

Now to get the equivalent geometry vector for a Zed spline. First find the transition matrix L:

*
L .

1

0

1

1

0

0

1

1

0

1 1

2

0

1

1

2

0

0

1

2

1

0

=L

1

0.5

0

0

0.5

0

0

0.5

1

The geometry vector G for the equivalent Zed spline is:

G .L

1

3

.5

Looking back at the definition of the Zed spline, this defines a spline that goes

through (0,1) and (1,2.25), which is correct, and has a slope of .5 at x=0, which is

also correct.=G

1

2.25

0.5

60

Frequently used uniform cubic splines

A certain number of uniform cubic splines very useful for various reasons, mostly
modelling curves. Some of these will be described here. The Hermite spline is
defined by four two control points P1 and P2 and 2 slopes vector S1 and S2.
Bézier splines are defined by 4 control points P1 through P4 and uniform
nonrational B-splines are also defined by 4 control points, with different
constraints however.

A few general notes before we dive into the main material. These splines are
cubics, hence they are of the form y=Ax3+Bx2+Cx+D and the derivative of such a
cubic is y'=3Ax2+2Bx+C. Often, constraints will be put on y(x) or y'(x) for some
x, which will then be used to figure out the basis matrix for the spline.

Hermite splines

The hermite spline is defined by two control points P1 and P2, and two slopes s1
and s2 as follows:

1- The spline interpolates through P1

2- The spline interpolates through P2

3- The slope at P1 is s1

4- The slope at P2 is s2

Since the spline is uniform, P1=(0,y1) and P2=(1,y2). The geometry vector G is
(y1,y2,s1,s2). We re-write the four constraints using that:

1- y1=D

2- y2=A+B+C+D

3- s1=C

4- s2=3A+2B+C

We re-write in matrix form and solve for (A,B,C,D):

61

A

B

C

D

.

0

1

0

3

0

1

0

2

0

1

1

1

1

1

0

0

1
y1

y2

s1

s2

A

B

C

D

.

2

3

0

1

2

3

0

0

1

2

1

0

1

1

0

0

y1

y2

s1

s2

M
hermite

2

3

0

1

2

3

0

0

1

2

1

0

1

1

0

0

Mhermite is the basis matrix for hermite splines.

Bézier splines

Named after the French dude Pierre Bézier (for French people are dudes). This
spline is defined by control points P1, P2, P3 and P4 as follows:

1- The spline interpolates through P1

2- The spline interpolates through P4

3- At P1, the slope of the spline is the slope of the P2-P1 vector

4- At p4, the slope of the spline is the slope of the P4-P3 vector

We re-write as mathematical constraints, noticing that P1=(0,y1), P2=(1/3,y2),
P3=(2/3,y3), P4=(1,y4), the slope of P2-P1 is 3(y2-y1) and the slope of P4-P3 is
3(y4-y3). The geometry vector is G=(y1,y2,y3,y4).

1- y1=D

2- y4=A+B+C+D

3- 3(y2-y1)=C

4- 3(y4-y3)=3A+2B+C

3 and 4 can be somewhat simplified:

3- y2=C/3+D

62

4- y3=B/3+2C/3+D

We re-write this in matrix form and solve for (A,B,C,D):

A

B

C

D

.

0

0

0

1

0

0

1

3

1

0

1

3

2

3

1

1

1

1

1

1

y1

y2

y3

y4

A

B

C

D

.

1

3

3

1

3

6

3

0

3

3

0

0

1

0

0

0

y1

y2

y3

y4

M
bézier

1

3

3

1

3

6

3

0

3

3

0

0

1

0

0

0

Convex hull

The convex hull of a set S is the smallest convex set C such that S⊆ C. At this
point, we need a strict definition of convex sets, then we can prove existence and
uniqueness of convex hulls.

We assume a definition of line segment between x and y, such a definition can be
made strict in the context of vector spaces over the reals. Then, L is defined simply
as

L(x,y)={tx+(1-t)y|t∈ [0,1]}

The “natral definition” of “L is the shortest path between x and y” works well
when the integral is well defined only.

Definition: A set C is said to be convex if, for ALL x,y in C, L(x,y)⊆ C. (Ie, C is
convex if, for all pair of points, the line segment between them is contained in C.)

Definition: arbitrary intersection D=∩ i∈ ISi. D is the set such that d∈ D⇔∀ i∈ I,
d∈ Si. Given Si and a non-empty I, D is unique. (Proof: assume that D1=∩ i∈ ISi,
D2=∩ i∈ ISi, D1≠D2. Assume without loss of generality that d is in D1 but not in
D2. Since d is in D1, then d is in all Si. Therefore, d has to be in D2, contradiction.
QED.) Such a set is minimal in the sense that D⊆ Si for all i in I.

63

Definition: Convex hull. First assume the universe U is convex (this is true for
Rn). Then, the convex hull C of an arbitrary set S is defined as ∩Cα, where
K={Cα} is the set of all convex supersets of S. Since S is in U and U is convex, U
is an element of K, thus the intersection exists and is unique. It is also minimal. All
we have to prove is that C is convex. But this is trivial, as we are about to show.
Take an arbitrary pair of points x, y in C. We have to prove that L(x,y) is a subset
of C. Since x and y are in C, x and y have to be in Cα for all α. Since Cα is convex,
this means that L(x,y) is in Cα for all α. Therefore, L(x,y) is in C. This is true for
any x,y in C, thus C is convex.

As an example, a triangle is its own convex hull. For a concave polygon, the
convex hull is the smallest convex polygon that completely includes the concave
polygon.

Now on to convex sums. A convex sum is a weighted sum ∑1≤i≤nwiyi such that
∑1≤i≤nwiyi=1 and wi is non-negative. A convex sum is so called because the resulting
sum is in the convex hull of its control points yi, as we are about to prove. We will
here use a proof by induction. Let us first articulate the proposition we are about
to prove.

Pi=“The sum Si =∑1≤j≤iwjyj where the weights wj are positive and sum to 1 lies
within the convex hull of the control points yj.”

P1 translates into w1y1, where w1 is positive and w1=1, is in the convex hull of y1,
which trivially true.

The next step is to demonstrate that Pi⇒ Pi+1. Now let us examine Pi+1.
∑1≤j≤i+1wjyj=∑1≤j≤iwjyj+wi+1yi+1. Let K=∑1≤j≤iwj. We know that K<1 since all
weights are positive and add up to 1. We can scale up Si by 1/K (call that Q).
Then, by hypothesis of Pi, Q is in the convex hull of the y1 through yi. However,
Si+1=KQ+wi+1yi+1 and K+ wi+1=1. Thus Si+1 is on the line between Q and yi+1. Since
both Q and yi+1 are in the convex hull of y1 through yi+1, the line between Q and yi+1

is in the convex hull. Thus Si+1 is in the convex hull. By induction, Pi is true for all
i, which completes the proof.

Bernstein polynomials

The nth degree Bernstein polynomial, Bn(x) is defined by n+1 control points y0,
y1, y2, ..., yn as follows:

Bn(x)=∑0≤i≤nC(i,n)xi(1-x)n-iyi where C(i,n)=n!/[i!(n-i)!]

n! is the factorial of n, is 1×2×3×4×...×n. As an example, 6!=720. As per the
definition above, C(3,5), for example, would be 5!/(3!2!)=10.

64

At this point in time, it is useful to view the spline as a weighted sum of its control
points. Looking at Bn(x) as above, we can see that for a fixed x, we are in effect
taking a weighted sum of the yi’s: ∑0≤i≤n wiyi. Let us now examine the weights.

A weight wi=C(i,n)xi(1-x)n-i as above can be interpreted probabilistically using the
binomial distribution. If we are repeating an experiment n (independant) times,
each time with probability of success x, then wi is the probability of the experiment
succeding exactly i times. Then, it becomes obvious that ∑0≤i≤n wi =1 (the sum is
simply the sum of the probabilities of all possible outcomes, which has to be one).

Going back to Bn(x), we can now say that the Bernstein polynomial is a convex

sum of its control points. A convex sum is when the sum of the weights is one ad
each weight is positive (as is the case here). It is so called because then the result
will be in the convex hull of the control points. Of particular interest to us is the
B3(x) polynomial. It can be written down as follows:

B3(x) =y0(1-x)3+y13x(1-x)2+y23x2(1-x)+y3x
3

=y0(1-3x+3x2-x3)+y1(3x-6x2+3x3)+y2(3x2-3x3)+y3x
3

=x3(-y0+3y1-3y2+y3)+x2(3y0-6y1+3y2)+x(-3y0+3y1)+y0.

It is obvious from this last form that we have just found an equivalent definition to
the Bézier spline. With the work we have just accomplished, we have
demonstrated that a Bézier spline lies within the convex hull of its control points,
which is an important property, as we will see later.

Uniform nonrational B-spline

The uniform nonrational B-spline is defined as a cubic polynomial spline which has
C2 continuity everywhere even when several B-spline segments are put in
sequence. The term nonrational refers to the fact that we are dealing here with a
conventional polynomial, as opposed to a quotient of polynomials. A rational
spline is defined by the quotient of two polynomials.

The B-spline is defined by 4 control points P1, P2, P3, P4. However, let us
examine exactly how we should use these to make certain that consecutive B-
splines are C0, C1 and C2 continuous. That is, say we have 6 points P0, P1, P2,
P3, P4 and P5. Then, the B-spline defined by P1, P2, P3 and P4 is the one we are
interested in, let's call it segment S2. However, there is a spline segment defined by
P0, P1, P2, P3, which we will call S1. We want S1 and S2 to have C0, C1 and C2
continuity at their joint. Furthermore, there is a spline defined by P2, P3, P4 and
P5, which we name S3, and we want S2 and S3 to have C0, C1 and C2 continuity
at their joint.

This section in progress, I can't find a justification for the B-spline basis matrix.

65

Catmull-Rom splines: a non-uniform type of spline

This spline type is defined as follows (given four control points P0 through P3

(x0,y0), (x1,y1), (x2,y2) and (x3,y3), xi are increasing):

1- The spline interpolates through (x1,y1).

2- The spline interpolates through (x2,y2).

3- The spline’s slope at x0 (the second control point) is whatever slope the line
from the first to the third control point is.

4- The spline’s slope at x1 (the third control point) is whatever slope the line from
the second to the fourth control point is.

The spline segment thus defined is for the [x1,x2] segment. If a similar spline is
defined with the control points P1, P2, P3, P4, then they will join at P2 and their first
derivative will agree, giving it a smooth appearance. Writing the restrictions
expressly in equation form, we get:

1- y1=Ax1
3+Bx1

2+Cx1+D.

2- y2=Ax2
3+Bx2

2+Cx2+D.

3- y’(x1)=3Ax1
2+2Bx1+C=(y2-y0)/(x2-x0).

4- y’(x2)=3Ax2
2+2Bx2+C=(y3-y1)/(x3-x1).

66

Rendering

Introduction

Rendering is the phase where we do the actual drawing. There is a general
tendency to download this particular task to a slave graphics processor and leave
the CPU to do better things. However, it will always be useful for everyone to
have a general understanding of how things work. And also likely is the fact that
we're going to need software renderers for a while more. And one last fact is that
people have to write the software for the slave processor.

We will first study the drawing of a point, which will be used to draw other
primitives. Then we will study lines and polygons. Curved surfaces can also be
supported but will not be discussed. The curved primitive that tend to be faster in
drawing are conics and polynomials. However, some other forms of curved
primitives definitions are often preferred, mainly splines.

The point

A geometric point is a 0 dimensional object. It could also be defined very strictly
with neighborhoods and somesuch. However, this is not particularly useful to the
computer graphics specialist. One thing that we must remember, though, is that it
is impossible to display a point on any medium. Quite simply, a point has a size of
zero, no matter if the definition of size is length, area or volume. It cannot be seen
under any magnification.

What the computer graphics expert usually refers to as the point is the smallest
entity that can be displayed on the display device. These are not necessarily
circular or rectangular things - and more often than not, they are slightly blurred.

We will refer to this point as a pixel. We will also need to make a few basic
assumptions. Generally speaking, pixels are of an arbitrary shape (often
rectangular-like), and are aligned in a very structured way on the display device.
Note that some devices do not use this method of displaying things, these are
commonly referred to as vector devices. There was an old Star Wars (trademark of
LucasArts I believe) game made with one of these.

67

We will also very much like pixel to be aligned in a cartesian plane like manner.
We generally assign pixels integer position, and what's not exactly on a pixel has a
noninteger position. But what is the position of the pixel? That's another entirely
arbitrary matter. Generally speaking, we might want to simplify the pixel's location
to its centroid. Also, there is the problem of axis orientation. For a combination of
arbitrary and historical reasons, the screen coordinates origin is very usually
centered on the upper left corner and goes positively down and right in hardware.
Operating sometimes hide that from the user application and use a coordinate
system centered on the lower left corner, and go positively up and right, just like
the usual cartesian plane.

The way that pixels are stored internally is also of importance. Generally speaking,
each pixel is assigned a color, and the number of colors available per pixel is
defined by the number of bits allocated to each pixel. For instance, if each pixel has
6 bits of color data to it, then each pixel can be one of 64 colors. When a "strange"
number of bits per pixel is used, it often happens that the bits are spread in a less
intuitive way. For example, in the 6 bit case, instead of using one byte per pixel
and wasting 2 bits per pixel, the system will likely store bit 0 of all pixels, then bit 1
of all pixels, then bit 2 of all pixels, and so on. This is called a bit-plane
arrangement.

If the number of bits per pixel is closer to 8, 16, 24 or 32, then some systems will
allow what is generally referred to as a linear arrangement of pixels. For example,
if 8 bits are allocated per pixel, then one byte corresponds to one pixel.

It is generally accepted that with 24 bits per pixel, the human eye cannot see the
difference between two very similar shades of the same color. (High end platforms
today use 16 bits per component, including a so-called alpha channel, for a
possible total of 64 bits, but this is to minimize roundoff when combining several
images together, for instance.) However, 24 bits per pixel is roughly 16 millions of
colors. Thus, when using a mere 6 or 8 bits per pixel, sacrifices must be made.

One way that the industry has found is to make a look-up table. As an example,
each pixel is assigned a value from 0 to 255 (for 8 bits), and the hardware is given
a lookup table of 256 color entries. Each color entry can contain a 16 or 24 bit
color for example. Then, the hardware automatically substitute the proper entry in
the table for each pixel when it has to display them. The lookup table is often
referred to as the palette or color map.

68

At any rate, eventually one needs a way of identifying colors, either to select the
color map colors, or in the case of a 24 or 32 bits system, select the pixel color.
There are several ways of doing this. Two of the most popular means are RGB
colors and HSV colors. RGB is an acronym for red, green and blue. Colors are
specified by their red, green and blue contents. It is interesting to note that displays
usually do not use red, green and blue, but colors that are close to these. The
colors actually used by the displays were selected to allow for a broader range of
colors.

Another popular means of selecting a color is with HSV values. This is another
acronym that stands for Hue, Saturation and Brightness (isn't that last one
obvious?) This model is more intuitive than the RGB model for most people. Other
models include the CMY (Cyan, Magenta and Yellow) and YIQ (Luminance and
Chromaticity) models.

Writing to a specific pixels usually involves finding an address and then putting a
value in it. Since memory is usually mapped in a one dimensional fashion, device
pixels are mapped in an arbitrary way to memory. Usually, finding a memory
location for a pixel involves a multiplication. However, multiplications are typically
expensive, thus we might want to look into that a bit further. Let us assume a
800x600 display, with 8 bits per pixel and linear mapping.

A base address A has to be given for the top-leftmost pixel (assuming origin is at
top-left). Then, the first row of 800 pixels would be the next 800 bytes. Then next
row of 800 pixels would follow and so on. Generally speaking, pixel (x,y) for an
integer x and y can be found at memory location A+x+y*800. Note that some
systems will want to pad each row with a few bytes sometimes.

Multiplying once per pixel write is a bit expensive. There are several workarounds.
The first one is straightforward but hardware dependant. The second one assumes
that we access pixels in a coherent way (not totally random).

If the width of the display device in pixels is known in advance, the multiplication
can be removed the following way. Say the pixel to be addressed is at memory
location A+x+y*800. 800 is 512+256+32, thus we have A+x+y(512+256+32) =
A+x+512y+256y+32y. However, 512=29, 256=28 and 32=25 Thus, the pixel
memory location is A+x+29y+28y+25y. Note that a multiplication by a power of
two can be optimized out with left shifts, which are typically much faster than
multiplications. Let a<<b denote a shifted left by b bits, then the memory location
of the pixel can be expressed as:

A+x+y<<9+y<<8+y<<5.

Similar decompositions in powers of two of various scalars can be found. The
problem with this is that it requires the scalar (display device width in pixels) to be
hard-coded in the program.

69

Another way of accessing pixels is by exploiting coherence. If we plane to access
all the pixels on a given scanline, starting from left to right, then the following is
true.

Pixel at memory location A+y*width is the leftmost pixel on the scanline. The
second leftmost value is the above value plus one. The third one can be found by
adding one again, and so forth. Thus, accessing pixels that are adjacent on a
scanline can be done in one add per pixel only.

Accessing pixels that are on the same column is similar, except that <width> is
added each time to the memory location.

Lines

There are a number of ways to draw lines. Generally, they all boil down to the
same basic ideas, and have roughly comparable speeds. The algorithm presented
here is the one I felt had the best mixture of simplicity, efficiency and small size. It
has the disadvantage of being less exact than some other algorithms for lines of
rational slopes. We will first start with special cases, then move to more general
cases.

The simplest lines to draw are the horizontal and vertical ones. As can be imagined
easily by the reader from the last section, we start with the topmost or leftmost
pixel, draw it, then either add 1 or <width> to memory location and draw the next
pixel. And so on, for the length of the line.

The next step up is an angled line. If the line is not vertical nor horizontal, then it
can be expressed as y=mx+b or x=ny+c, with n=1/m and c=-b/m, whichever is
preferred. The representation one has to use is whichever of the two has the
smallest m or n. This is to ensure that there are no large gaps between the pixels of
a line. Afterwards, we initialize (x0,y0) to be one endpoint of the line. If we chose
y=mx+b, we should be using the leftmost endpoint for (x0,y0). We draw (x0,y0),
then increment x, and add m to y. Then we draw the new point. The extension to
the x=ny+c form is left to the reader.

Notice that the previous paragraph is simply an application of forward differencing
studied previously. The witty reader will easily imagine the extension of this to
higher degree polynomials. It is also possible to extend incremental algorithms to
circles and ellipses, amongst others, but we will not go into this.

In some applications, such as polygon drawing, one of either y=mx+b or x=ny+c
will be preferred even if the slope is greater than 1.

70

Note that the topic of line drawing can be extended much more than this. Anti-
aliased lines, line width and patterns, endpoint shape are all topics that we will not
cover.

This algorithm has the nice property of being a special case of forward
differencing. It's also fast and has no comparisons in the so-called inner loop.
(Comparisons have a tendency to flush prefetch queues in CPU's, which results in
relatively long delays in the inner loop).

However it has the disadvantage of accumulating roundoff error at each new pixel.
This should not be a problem in general, but when utmost precision is needed, an
alternate algorithm which does not accumulate error might be considered.

The algorithm works without any error accumulation (the only error is the
roundoff to the nearest pixel). The idea is as follows. We first observe that the
slope m is a rational of the form a/b. Let's assume m is positive and less than 1. We
can make a special case for each of the 8 octants such that this is true.

Next, let's assume y0 is of the form N+c/b, where c is some integer between 0 and
b. Then, when adding the slope to the current y, we get N+(c+a)/b. However, now
we need to check whether c+a is more than b. If it is, then we rewrite as:
N+(c+a)/b=N+(c+a-b+b)/b=N+1+(c+a-b)/b. This means that whenever c+a is
more than b, we subtract b from it and add 1 to N. The pixel coordinate in y that
we actually draw is N. (This implies that we're truncating y. If we want to round
off rather, we can add 0.5 to the original y0, which will have the net effect of
rounding to the closest integer. The denominator can be doubled to avoid roundoff
in the .5). Pseudocode for this follows (integer endpoints are assumed, this can be
generalized to rational endpoints of course).

Let (x0,y0) and (x1,y1) be the endpoints of the line segment, such

that (x1,y1) is in the first octant relative to (x0,y0).

Let a=2*(y1-y0)

Let b=2*(x1-x0)

Let N=y0

Let c=(x1-x0)

for x varying from x0 to x1 by steps of one, do

putpixel(x,N)

add a to c

if c>=b then

subtract b from c

add 1 to N

end if

end for

Polygon drawing

71

Let us first define a few terms, in an intuitive and geometric fashion. A polygon is,
as can be seen above, a 2d object with area, delimited by edges. The edges are line
segments, and there is a finite number of edges.

Polygons that do not self-intersect can be said to be either convex or concave. The
polygon above is self-intersecting. A convex polygon is one for which the inside
angle at any vertex is less than or equal to 180 degrees. All other polygons are said
to be concave. Sometimes, it is said that a particular vertex is concave, which is
not entirely correct, but rather means that the inside angle at that vertex is more
than 180 degrees.

What interests us most is filled primitive. It is relatively easy to draw a wire frame
polygon using only line drawing routines described previously (hidden line removal
then becomes a problem).

The star-shaped polygon shown above is very interesting to us because it exhibits
the more interesting properties we want our polygons to have. The grayed areas
are considered to be inside the polygon, where the white areas are outside the
polygon. This means that the inner pentagon is considered to be outside. The rule
for determining whether a point lies inside or outside the polygon is as follows.

To determine if a point lies in or out of a polygon, draw a line from that point to
infinity (any direction, far far away). Now find the number of times that line
intersects the polygon edges. If it is odd, the point is in, if it is even, the point is
out. This is called the even-odd rule by the industry. It is recommended that you
try this with the star above and note that it works no matter what point you pick
and no matter what direction you draw the line in.

The basic idea of the line polygon drawing algorithm is as follows. For each
scanline (horizontal line on the screen), find the points of intersection with the
edges of the polygon, labeling them 1 through n for n intersections (it is of note
that n will always be even except in degenerate cases). Then, draw a horizontal line
segment between intersections 1 and 2, 3 and 4, 5 and 6, ..., n-1 and n. Do this for
all scanlines and you are done.

Probably, you might want to restrict yourself to scanlines that are actually spanned
by the polygon. Also, there are a few things to note.

If the polygon is convex, there will always be only one span per scanline. That is
generally not true for concave polygons (though it can accidentally happen).

72

Here is pseudocode for a polygon filling algorithm.

Let an edge be denoted (x0,y0)-(x1,y1), where y0≤y1. Edges also
have a "current x" value, denoted cx. Initialize cx to x0. One

should also compute the slope of all edges, denoted s, which is

(x1-x0)/(y1-y0) (we are using the x=ny+c representation).

Let IET be the inactive edge table, initially containing all edges

Let AET be the active edge table, initially empty

Sort the IET's edges by increasing values of y0

Let the initial scanline number be the y0 of the first edge in the

IET

Repeat

While scanline≥y0 of the topmost edge in the IET
Move topmost edge from IET to AET

End while

(*) Sort AET in increasing values of cx

For every edge in the AET

If edge's y1≥scanline, then remove edge from AET
Else add the slope "s" to "cx".

End for

For each pair of edge in the AET

Draw a horizontal segment on current scanline between

column "cx0" and "cx1", where "cx0" is the "cx" value

for the first edge in the pair and "cx1" is the "cx"

value for the second edge in the pair

End for

Until the AET is empty

It is of note that the line marked by (*) can be optimized out. If the polygon is not
self-intersecting, we just need to make sure the AET is properly sorted when we
insert a new edge into it.

It should be noted that edges that are parallel to the scanline should not be put in
the IET. You might also need to clip the polygon to the viewport, which can be
added to the polygon blitting code.

73

Visible surface determination

Introduction

One of the problems we have yet to address, when several objects project to the
same area on screen, how do you decide which gets displayed. Intuitively, the
closest object should be the one to be displayed. Unfortunately, this definition is
very hard to handle. We will usually say that the object to be displayed will be the
one with the smallest z value in eye space, which is a bit easier to work with. A
corollary of this is that objects with the largest 1/z value get displayed, this latter
observation has applications which will be explained later.

Visible surface determination can be done in a number of ways, each has its
advantages, disadvantages and applications. Hidden line removal is used when wire
frames are generated. This might be useful for a vector display, but will not be
covered in here. When dealing with filled primitives, there are several classes of
visible surface determination. There is also the question of object precision, device
precision, and more, these topics will not be discussed here.

Perhaps the most intuitive visible surface determination algorithm is the so-called
"painter's algorithm", which works the same way a painter does. Namely, it draws
objects that are further away first, then draws objects that are closer. The
advantage of this is it's simple. The disadvantages are that it writes several times to
some areas of the display device, and also that some objects cannot be ordered
correctly.

The painter's algorithm can be generalized into the depth-sorting algorithm, which
sort the primitives from back to front and then draw. The depth sorting algorithm
also resolves cases that painter's algorithm does not.

Another algorithm is space partitioning trees such as BSP (binary space partitions)
trees. The advantage of this algorithm is to generate a correct ordering of the
primitives quickly and correctly no matter where the viewer is. The disadvantage is
that it is hard to add any polygons to a scene thus rendered, or to deform it in a
nonlinear way. Approximations can be made.

74

Yet another way of doing visible surface determination is the class of algorithms
generally referred to as "scan-line algorithms". These algorithms, though
somewhat slower than depth sorting, have the advantage of drawing to each and
every pixel of the display device once and only once. Thus there is no need to clear
the display in the first place, and pixels are not written to needlessly. Incidentally,
this algorithm is very useful for display devices where it is impossible or difficult to
erase or rewrite to pixels, such as printers. The disadvantages are that it's slightly
slower, and usually quite more messy to code than a depth sorting algorithm. Also,
visible surface determination becomes an integral part of the polygon drawing
routine in most cases, making it hard to download the polygon drawing code to
some hardware, or to make several versions of polygon drawing code for different
drawing modes.

A very popular way of doing visible surface determination is called z-buffering.
This works by storing the z value whatever occupies a pixel for each pixel. This
way, one can add new primitives to a scene, visible surface determination is just a
compare away. Incidentally, it is usually much more efficient to use 1/z values than
it is to use z values, since 1/z varies linearly but z does not.

Another algorithm worth mentioning is the Weiler-Atherton algorithm, which clips
primitives so that they do not intersect before drawing, and Warnock's algorithm,
which recursively subdivides the display area until it can trivially determine which
primitive to draw. These algorithms are fairly slow.

An optimization that can be made to any visible surface determination algorithm is
back-face removal or back-face culling. This is based on the observation that faces
that are facing away from the observer

As of now, the only algorithms discussed will be the depth sort and painter's
algorithm, along with z buffering and back-face culling..

Back-face culling

Back-face culling exploits the observation that a face in a closed polyhedron
always has two sides. One faces inside, and can never be seen by an observer
outside the polyhedron (rather obviously since the polyhedron is closed), the other
faces outside and can be seen. However, if it is determined that the side facing the
eye is the inside of the face, that face will assuredly not be seen, because it is
impossible to see a face from the inside.

75

The side that faces the eye can be determined easily with dot product. Take a
vector V from the eye to any point within the polygon (for example, from the eye
to a vertex). Let A be the normal of the polygon, assuming that A points outwards
of the polyhedron. Then, compute V•A. If it is positive, the inside of the face is
towards the camera, do not display or transform the face. If it is negative, the face
is facing the camera and might be seen (though this is not guaranteed).

Back-face culling is generally not sufficient for visible surface determination. It is
merely used to remove faces that assuredly cannot be seen. However, it will do
nothing for faces that are only obscured by faces that are closer. Also, back-face
removal assumes that the objects are closed polyhedra, and that faces are opaque.
If this is not the case, back-face culling can not be applied.

Note that if the only thing displayed is a convex object, back-face culling is
sufficient for visible surface determination (it will only leave the faces that are
actually visible).

Also note that back-face removal should be done in object space, not in world or
eye space. That's because, in order to do it in world space, one has to transform all
plane normals before doing the dot product, which is rather expensive. However, if
performing the culling in object space, one only needs the location of the eye in
object space, and normals need not be transformed.

It can be shown that back-face culling is expected to cull roughly half of the
number of vertices, faces and edges in a scene, except for special scenes that are
made to be viewed from a particular angle or somesuch.

Sorting

With the painter's algorithm, one has to assign a z-value to all primitives. Then, the
primitives are sorted according these values of z, and the resulting image is drawn
back-to-front. Several sorting algorithms can be used for this purpose, and even
though basic algorithms is not the subject of this document, we will discuss two
simple sorting schemes now.

The simplest sorting algorithm, and a frightfully slow algorithm in most cases, is
the bubble sort. Here follows pseudocode for the bubble sort.

Let z[1..n] be the array of n values to sort

Let f be a flag

Repeat

Clear f

For i varying from 1 to n-1

If z[i]>z[i+1] then

Set f

76

Exchange z[i] and z[i+1]

End if

End for

Until f is clear

As can be seen, the algorithm is exceedingly simple. For small values of n (say,
n<10), this algorithm can be used and will be close to optimal. However, if the list
is very badly ordered initially, the sort could take up to n2 iterations before
finishing.

Small improvements can be made to the algorithm. For one thing, instead of
always scanning in the same direction (from the first element to the last), one
alternates directions, sorting an already close to sorted list is very efficient. The
loop will execute roughly n times (actually, it would execute k times n, where k is
some small constant). In the worse case though, it still executes in n2 iterations.

A second, more clever algorithm that works well on numbers, is the radix sort.
This sort can be done in any base (useful bases for a computer would be 2, 16 or
256, because they're powers of two). However, for the sake of simplicity in this
example, we will use base 10.

Using base n, n buckets are created (in our example, 10 buckets), labeled 0
through n-1 (0-9 in our example). Then, the numbers to be sorted are put in the
bucket that corresponds to their lower digit. The buckets are concatenated, and the
step is repeated for the next lower digit. An so on, until we get to the highest digit,
at which point we stop. The result is a sorted list. Pseudocode is given below for
base n. Note that the ith digit of base n number z is (z div ni)%n where div stands
for integer division, truncating off any fractions, and % is the modulo operator, or
remainder after division by n (a value from 0 to n-1 inclusive).

Let b[0..n-1] be n buckets, labeled 0 through n-1

Let z[1..m] be the m numbers to sort

Let D be the largest number of digits used

For foo varying from 0 to D-1 inclusive, do

For i varying from 1 to m inclusive, do

Put z[i] into its bucket, namely b[(z[i]/nfoo)%n]

End for

Concatenate all buckets, in order from 0 to n-1, back into z

End for

Note that division and modulo operations, when done with base two divisors, can
be implemented strictly with bit shifts.

This algorithm can be implemented with lists or arrays. Lists ensure that no
unnecessary copying is done, and allow buckets to grow dynamically. This is not
so easily accomplished with arrays, but the pseudocode below essentially does
that. It only needs to be repeated for every byte in the numbers to be sorted.

Let i[0..256] be 257 indices, initialized to 0

77

Let z[1..m] be the m numbers to sort

Then o[1..m] will be the m numbers once concatenated

Comment: The first step we take is to count the elements that will

go into each bucket

For j varying from 1 to m inclusive, do

Let foo be the bucket to which z[j] belongs

Increment i[foo+1]

End for

Comment: now compute the index at which buckets start

For j varying from 1 to 255 inclusive, do

Add i[j-1] to i[j]

End for

Comment: lastly, put the numbers into the bucket and concatenate

For j varying from 1 to m inclusive, do

Let foo be the bucket to which z[j] belongs

Put z[j] into o[i[foo]]

Increment i[foo]

End for

Other sorting algorithms that might be of interest include the quick sort, heap
sort, insertion sort and merge sort. These will not be discussed here, they each
have their advantages and drawbacks (for a full discussion, see [2]).

Painter's algorithm and depth sorting

As was previously mentioned, painter's algorithm assigns a z value to each
primitive, then sorts them, then draws them from back to front. Objects that lie
behind are then written over by objects that lie in front of them. Note that, no
matter the scheme used to select the z value for an object, primitives that have
overlap in z may be incorrectly ordered. But there is worse. Note the pathological
case below, where it is impossible to generate a proper ordering for the three
triangles:

78

In this case, it is necessary to cut one triangle into two parts and sort the parts
individually.

A way of handling all cases is as follows. Assign a z value to all polygons equal to
the vertex belonging to the polygon that has the largest z coordinate value in eye
space. Then sort as per painter's algorithm. Before actually drawing, we need to do
a postsort stage to make sure the ordering is correct for polygons that have z
overlap.

Assuming we sorted in increasing values of z, it means that we need only to
compare the last polygon with the consecutive previous polygons for which the
furthest point is in the last polygon's z span. Once the last polygon is processed,
we will not touch it anymore (unless the last polygon is moved to some other
position in the list). Thus, we just consider the list to be one element shorter and
recurse the algorithm.

The steps that should be taken are as follow (P and Q are the polygons we are
comparing).

1- Check whether the polygons x and y extent overlap on screen. If they do not,
there is no need to compare the polygons. Otherwise, we are undecided (go to 2)

2- Check on what side of P's plane the eye lies. If Q lies entirely on that side of P's
plane, Q is considered to be in front of P. If Q lies entirely on the opposite side of
the eye in relation to P's plane, then P is in front of Q. If Q crosses P's plane, we
are still undecided.

3- Repeat 2 above, but with Q and P inverted.

4- Check if the polygons overlap on screen (find whether the edges of the
polygons intersect)

Once a polygon has been moved in the list, mark it so that it is not moved again. If
one of the above steps would say that a polygon that has already been moved in
the list should be moved again, then you will have to use the last resort, clipping.
Cutting up the triangle into pieces (clipping) will be described later.

Of course, one needs not to perform all these tests if they are deemed to be more
expensive than clipping. For instance, the only tests one could do is test for
overlap in z, then x and y on screen, then check for step 2 and if it is still
unresolved, simply clip the polygons and put the pieces where they belong.

When polygon ordering can not be resolved, pick one of the two polygons for
clipping plane and clip the other polygon with it. Then, insert the two pieces at the
appropriate positions in the list.

79

A very nice way of doing all these tests is as follows. Calculate bounding boxes for
z value in 3d, and u,v in 2d (screen space, after perspective transform) of the
polygon. Then, sort the bounding boxes in x, u and v. This can be done in linear
time using the radix sort algorithm (or by exploiting coherence in a comparison
sort algorithm). Then, only the polygons for which the bounding boxes overlap in
all three axis need to be checked further.

Z-Buffering

This algorithm tends to be slightly slower than painter's algorithm for low number
of polygons (less than 5000). It would appear that it would gain as the number of
polygons increases though.

The idea is to make an array of z or 1/z values, one for each pixel. As you draw a
polygon, compute the z or 1/z value at a pixel, compare it with the current value
for the pixel, and if closer, draw, otherwise, do not draw.

This algorithm has the advantage that it requires no sorting whatsoever. However,
the algorithm performs one comparison per pixel, which tends to be a bit
expensive. Also, memory requirements tend to be bigger than other algorithms.
Nevertheless, the simplicity of the implementation makes it very attractive.

As a side note on evaluating z or 1/z, the latter can be shown to be linear while the
former is not (we did this in the perspective chapter). Thus, it will likely be
preferable to store 1/z values instead of z, because they can typically be computed
much more quickly. The mathematics of that are shown below.

Let Ax+By+Cz=D be the plane equation for the polygon in eye space. Let (u,v)
denote the pixel on screen, and let the perspective projection equation be u=px/z
and v=qy/z for some constants p and q. This can be rewritten as:

x=uz/p y=vz/q

Auz/p+Bvz/q+Cz=D

z(Au/p+Bv/q+C)=D

And then, depending whether we are interested in z or 1/z, we get:

z=D/(Au/p+Bv/q+C)

or

1/z=A/(Dp)u+B/(Dq)v+C/D

80

The latter can be rewritten as

1/z=Mu+Nv+K

M=A/(Dp), N=B/(Dq), K=C/D

Thus, 1/z varies linearly across the (u,v) plane of the display device. When forward
differencing is applied, calculations for values of 1/z are reduced to one add per
pixel, with a small setup cost.

Note that visible surface determination can be performed in a clever way using A-
Buffering (described in the antialiasing section).

Binary Space Partitioning

Let us assume we have the description of a scene. Let us cut the scene with a plane
P. (That is, choose a plane that splits the scene into two halves.) The crucial point
in BSP is that anything on the same side of the plane P as the observer can not be
obscured by anything on the other side of the plane P. Therefore, if we can split
the space with a plane P in a side A, in which the camera lies, and a side B, which
is the other side, then we can draw everything in B then everything in A, and the
drawing order between objects in B and A will be correct. Note that we still need
to somehow determine what is the correct order within B and A.

Observer1

2

3

4

81

In the example above, we show the partitioning plane P with a dotted line, objects
are rectangles and ellipses, and the two areas are marked A and B. The observer is
the dark spot marked "observer". In this case, objects 1 and 2 are on the "A" side
of the P plane, therefore it is impossible for them to be obscured by any object in
the B side (namely objects 3 and 4). This is true no matter where in A the observer

lies. The observer can be anywhere in the A region and objects 1 and 2 will never
be obscured by objects 3 and 4 for the observer.

However this is still not sufficient. We still need to have a drawing order for
objects in the A region and objects in the B region. Therefore, we recurse the
algorithm and split the A region into two sub regions for which the ordering
becomes unambiguous and similarly for the B region, as seen below:

Observer1

2

3

4

Now there are four regions, A, B, C and D. Space is partitioned at the root by P.
Then, the two resulting subspaces are partitioned by p1 and p2. This can be
represented by the following tree:

When we want to get a drawing order for objects 1, 2, 3 and 4, we traverse the
tree as follows:

a) Start with the root P, find on which side of the plane the observer lies. That is
the AB side. The opposite side is the CD side. So first, draw the CD side, then the
AB side.

b) Draw CD side. Find on which side of p2 the observer lies. The observer
is on the C side of p2, the opposite side is D. So first draw D then draw C.

82

c) The D side has only one object, draw it (so we draw object 4
first)

d) The C side has only one object, draw it (the second object we
draw is object 3)

e) Draw the AB side. Find on which side of p1 the observer lies. The
observer is on the A side of p1, so first draw the B side then the A side.

f) The B side has only one object, so draw it (the third object we
draw is object 1)

g) The A side has only one object, so draw it (the last object we
draw is object 2)

The drawing order generated by this algorithm is therefore 4,3,1,2. This ordering is
correct.

Sometimes it might be impossible to find a plane that neatly splits space into two
sections. When this happens, you can just pick any plane and slice objects apart
with it. That is, if a plane intersects an object, slice the object into two sub-objects
that do not intersect the splitting plane.

If we have a planar object that is exactly on the splitting plane, then the drawing
order can be tweaked slightly to draw it:

1) Draw everything that's on the opposite side of the plane from the observer as
usual

2) Draw everything that's on the plane

3) Draw everything that's on the same side of the plane as the observer as usual

If the observer is on the splitting plane, the drawing order is not important.

For polyhedral objects, this can be used efficiently as follows. Instead of arbitrarily
picking planes and splitting space, pick a polygon's plane as partitioning plane.

When generating a BSP, you get a binary tree representation of your scene. If you
used the planes of the polygons as partitioning planes, you have an additional mild
bonus. The leafs of the tree are either inside the polyhedron or outside. That is, the
regions in space described by the leafs of the tree are either totally outside the
polyhedron or totally inside it. This can be used for simple collision detection of
polyhedron with points, even though it is not always efficient to do so. (Efficient
collision detection is beyond the scope of this text. For a good starting point, see
[4]).

83

All this brings up the subject of generating an optimal BSP tree. There are many
problems with that. The first is the definition of optimal. In the collision detection
case (which is not too efficient anyway, but deserves mention), optimal often
means shallowest tree. For visible surface determination, minimizing the number of
triangle clipping is important, as well as minimizing the number of nodes (which is
a consequence of clipping). In both cases, the problem turns out to be extremely
hard (NP-Hard). In the "minimizing the tree depth" field, a greedy algorithm that
picks the plane that splits space as evenly as possible might do well. However,
when trying to minimize the number of polygon clips, it's harder to get good
heuristics.

Merging BSP trees is also a very tough problem. Basically it's at least as hard as
generating a new BSP tree from scratch. However, it is possible to cut corners.

If we have a very large maze-like scene (for example), and a small object
navigating through it, we can do as follows. We treat the small object as a point,
just like the observer, and traverse the BSP tree of the maze scene to find where
the "punctual" object belongs in the BSP tree. Once we have found it, we insert
the "punctual" object's BSP tree at that point in the maze BSP tree. This will work
relatively well so long as the small object dos not come close enough to corners in
walls to cause ambiguities in the display ordering.

It is also possible to insert several objects this way in the maze BSP.

This algorithm can be very efficient if we have many objects spread over a large
area where inter object ordering can be determined easily, but the objects
themselves are complex so intra object visual surface determination is nontrivial.

Note that a BSP can be processed through an affine transform and still remain
valid if proper care is taken. This means that we can move a binary space
partitioned object around, or we can move the observer in the BSP object (these
two are equivalent anyway) without fear of the algorithm crumbling. Therefore, it
is possible to have a few flying BSP objects at the same time, for instance.

84

Lighting models

Introduction

After all we have covered, we still have to decide how much light gets reflected off
things and such, and how it gets reflected. For example, some objects that are
facing towards a light source will appear much more bright, perhaps with a very
brilliant spot somewhere, than objects facing away from it. Objects also cast
shadows, which are much harder to compute. We might also want to somehow
take into account that a certain quantity of light bounces off everything and lights
up things equally from all directions.

Furthermore, we might want to vary the intensity of light across a given polygon,
especially if these polygons are big. If not, one gets a somewhat ugly effect called
mach banding where the contrast between faces gets amplified by our brain and
eyes. This will raise the question of how the light should vary across a polygon,
and why.

The first part discusses actual lighting models, and the second discusses shading
algorithms for rasterization of nonuniformly shaded polygons.

Lighting models

The most basic idea we can have is to make light intensity a function of the angle
between the direction of the light rays from the light source to a point, and the
normal to the point. This is called diffuse lighting. This means that light reflects off
the face equally in all directions, so the direction in which the eye is not relevant.

Looking back on the vector algebra chapter, we had a definition of angle with the
dot product. This is written as:

Cosθ=A•B/(|A|×|B|)

85

If A is the plane normal (of unit length), then |A| is 1 and can be removed from the
equation. B would be the vector from light source to point to be lit. Then, we
make light intensity a function of Cosθ, which is calculated to be A•B/|B|, which is
fairly easy to calculate. Note that if θ is less than π/2, it means that the face is
actually facing away from the light source, in which case it should not receive any
light from that light source. This can be recognized when A•B/|B|>0.

Usually, one makes the intensity of the light received from a light source A•B/|B|
times some negative constant (since positive values of A•B/|B| mean that the face
is facing away and that intensity is then 0).

One might want to take into account the fact that light usually diminishes the
further away you are from a light source. Physics say that light intensity is
inversely proportional to the square of the distance to the light source. This can be
written as k/|B|2, and multiplying that by the value previously given:

I=k×A•B/|B|3

However, as experimentation shows, it is sometimes useful to use some other
falloff than square of distance. Generally, people have been using a second degree
polynomial of |B|. However, if we try the specific case of linear falloff, we get this
very interesting simplification:

I=k×A•B/|B|2

If B=(a,b,c), then |B|=(a2+b2+c2)1/2. Thus, |B|2=a2+b2+c2, which eliminates the
square root, which is usually the most expensive calculation we have.

The question of what point on the polygon should be used for calculating the
vector B from light source to the point on the polygon is answered as follows.
Theoretically, B should be recalculated for each point on the polygon. This might
turn out to be expensive, and a constant B is then used across the polygon. In this
case, however, the B/|B|2 factor should be calculated only once for the whole
polygon.

The Phong illumination model also includes a specular component. In that case,
a function of the angle between the ideal reflection vector and the eye-to-point
vector is added. The reflection vector R is the direction in which the light should
be most reflected by the surface. R can be shown to be

R=2A(A•B)-B

(remember that A is the plane normal and B the light vector and note that A and B
should be normalized).

86

Let V be the vector from the observed point to the eye, normalized. Then, a
function of R•V can be added to the calculated intensity (before fallout due to
distance is taken into account), which will add a specular like highlight to the
shading. Mr. Phong Bui-Tuong used the following specular component:

k×(R•V)α

where α is the so-called specular reflection exponent and k is the specular
reflection coefficient. The larger the α, the more punctual the reflection. The
larger the k, the more intense the reflection. Values of α around 1-5 yield almost
no specular reflection, while a value of 300 or more yields a sharp spot. Note that
if a too large k is chosen, the image will look washed out or overexposed.

These calculations are done on a per light source basis, and should be summed.
Ambient light can also be added.

Shadow casting involves more complex computations which will not be discussed
here.

Smooth shading

The simplest form of polygon shading calculates one value of intensity and uses
that value across the whole polygon.

The other forms of shading require that we first examine our polyhedral model of
objects. The assumption we are making is that the polyhedral model is really an
approximation to a curved object. Thus, we would like the normal vectors and the
shading intensity to vary smoothly across the surface of the objects, just as it does
on a curved surface.

The usual way of accomplishing this is by computing a pseudo normal vector at
each vertex. (Keep in mind that a point in 3d has no normal vector, ergo we call it
pseudo-normal.) That pseudo-normal per vertex is not the normal of the vertex,
but rather the normal we think represents best the curved surface at that point. If
we have actual information about the curved surface, we should use that
information if we can to compute the pseudo-normal. Otherwise, one good way of
doing this is by computing the weighted sum of the faces that touch the vertex. For
example, you could sum all normals of the faces that touch the vertex and then
normalize. Or, you could make each face's contribution to the pseudo-normal a
function of the face's area or the angle made by that face at the vertex, and so on.
For ease in calculations, pseudo-normals should be made unit in length.

87

Then, one can go either one of two ways. The first one is interpolated shading, or
Gouraud shading. The second one is Phong shading, which is a bit more
complex.

In Gouraud shading, one calculates the intensity of reflected light on the vertices.
Then, we linearly interpolate the intensity of the light across the polygon, as shown
below.

As can be seen above, intensities are calculated for all vertices, particularly vertices
a, b and c. Then, intensity is linearly interpolated between a and b (assuming m is
1/5 of the way between a and b, we'll assign m an intensity of 4/5×a+1/5×b). It is
also interpolate linearly between a and c. Then, given the light intensities at m and
n, the intensity is interpolated linearly between m and n. Assuming P is midway
between these two, then its intensity should be (m+n)/2.

Note that for a n-gon, with n>3, gouraud shading is ambiguous in the sense that it
depends on scanline orientation. However, with n=3, the shading is unambiguous.
As a matter of fact, given a triangle (x0,y0), (x1,y1) and (x2,y2) and the three
intensities at the points, respectively i0, i1, i2, we can view this as three points in
3d (x0,y0,i0), (x1,y1,i1), (x2,y2,i2). Since we are linearly interpolating, and that
we have 3 points, then there is only one solution, of the form i=Ax+By+C. Using
matrix mathematics, one can find the coefficients A, B and C, and then
computations are reduced to one add per pixel with very little setup. Specifically,
we know that:

Ax0+By0+C=i0

Ax1+By1+C=i1

Ax2+By2+C=i2

88

Which can be represented in matrix form as:

.

x0

x1

x2

y0

y1

y2

1

1

1

A

B

C

i0

i1

i2

or,

XK=G, where

X

x0

x1

x2

y0

y1

y2

1

1

1

K

A

B

C

G

i0

i1

i2

Therefore, we have that K=X-1G, which solves for K.

As a special note, it should be remembered that a similar process can be used for
any type of linear interpolation across the surface of a polygon.

It is easy to demonstrate that no point within the polygon will be brighter or darker
than the brightest or darkest vertex, respectively. If a specular highlight should fall
within a polygon, Gouraud shading will miss it entirely.

Phong shading (not to be confused with the Phong illumination model) works
around this the following way. Instead of interpolating the intensity linearly, it
interpolates the (x,y,z) values of the pseudo-normals linearly, then normalizes, and
the does the lighting calculations once per pixel. As a side note, the interpolation
of x, y and z can be done as we just saw for Gouraud shading.

As you might imagine, this is extremely expensive. Many approximations,
workarounds and somesuch have been devised. Here we will study one such
approximation.

We will interpolate the (x,y) value of pseudo-normals linearly, but we will set
z=(1-x2-y2)1/2. Note that we still have a square root. However, since z is a
function of x and y only, and that x and y vary between -1 and +1 only, we can
make a lookup table for z, which makes it a lot faster. Then we can do the lighting
calculations. However, this is still a bit slow. If we know our light vector to be
constant across the screen, then we can optimize it further.

89

Assuming the light vector is (0,0,1), then the lighting calculations for diffuse
shading only is (x,y,z)• (0,0,1). This simplifies to z, which is (1-x2-y2)1/2, which is
the value we stored in the lookup table. So, interpolate (x,y) linearly and lookup
intensity in the lookup table. As a matter of fact, one can even put some other
values than (1-x2-y2)1/2 in the lookup table. These can be used to achieve
specular highlights, multiple light sources, or some nice metal/chrome/mirror
effects.

A note on the "mirror" effect. If we imagine that we have a sphere centered on our
object with an extremely large radius, and the in side of the sphere is paved with a
texture (example: stars & stellar objects) and the object has a mirror surface, then
the environment (textured sphere) should be reflected on it. The perspective
calculations and other things make this complex. However, we can simplify things
this way. We assume that the vector from eye to object (eye vector) is constant
over all of the surfaces of the object (which is normally true only in parallel
projections, but will be almost true if the object has little perspective distortion).
Second, we assume that the sphere has a large radius enough that the point of the
sphere which is reflected by a point of the object only depends on the eye vector
and the surface normal.

In this case, we can interpolate the surface normal Phong-style, then use that to
compute the reflected point from the sphere using the eye vector. However, the
computations are still quite expensive. We can simplify them by using the hack
where we interpolate x and y linearly and then set z=(1-x2-y2)1/2. Then, the
normal vector of a point on the surface is entirely determined by x and y. In this
case, the reflected point on the sphere depends on x, y and the eye vector. What
we can do is assume a fixed eye vector, then make a lookup table (which is then
only dependant on x and y, which is manageable) to find what point on the sphere
it reflects to.

Hence this simplifies to interpolating the (x,y) component of a surface normal
across the screen, then looking it up in a lookup table that contains the color of the
corresponding reflected point on the sphere.

Texture mapping & variants on the same theme

Texture mapping is the process by which we give a polygon its own planar
coordinate system, with two base vector that lie in the polygon's plane, and a
vector for the position of a point in the plane. Specifically, if u and v lie in the
plane of the polygon, and w is a point in the plane of the polygon (for example, a
vertex), then the plane equation for the polygon can be written as:

au+bv+w

90

where (a,b) are the texture coordinates on the polygon. Once we have (a,b), we
can assign different properties to different (a,b) pairs. For example, we can make
the color of the polygon a function of (a,b), which corresponds to classical texture
mapping. Another thing we can do is perturb the surface normal of the polygon
with some function of (a,b), which corresponds to bump mapping.

As it is, the Phong shading approximation we saw in the last bit of the preceding
section is essentially a texture mapping trick.

Note that it is possible to have several different coordinate systems for the same
polygon, if several different textures have to be applied (ie, one for the actual
texture mapping, another one for the phong shading, another one for bump
mapping, and who knows what else).

What we have said in this section up to now is (relatively) independent of the
projection used. Now we will consider the type of projection used.

In a parallel projection, linear interpolation, just like we did for Gouraud, across
the projected surface is correct (so long as the surface is planar). However, when
perspective projecting, linear interpolation is generally wrong. For an elaborate
discussion of the texture mapping equation in the perspective projection case, see
the perspective chapter.

If the plane of the perspectively projected polygon is perpendicular to the z axis,
then linear interpolation is exact. As the angle between the plane of the polygon
and the z axis moves away from 90 degrees, linear interpolation becomes more and
more wrong. If the polygons are small enough on screen, the perspective distortion
might now show, but for larger and more angled polygons, it is quite apparent.

Linear interpolation may suffice for some purposes on low end platforms and
games, but a correction for perspective will definitely be needed for more serious
applications, as discussed in the perspective chapter.

91

Computer graphics related problems

Introduction

In the process of learning computer graphics, one comes across several of the
classical questions in one version or another. These include "how do I compute the
plane normal of a triangle" or more generally "how do I compute the plane normal
of a polygon, preferably using all vertices to minimize error", "how do I make a
normal that points outwards" and such.

These technical questions need to be addressed individually, since they typically
have very little in common. First will be covered generating normals that point
outwards for polygons. An application of that will be covered, which is
triangulation of a concave polygon. Computation of a normal for any polygon is
then considered, by using all vertices to compute it. Then will be covered the
problem of generating plane normals that point outwards of a polyhedron, which
relies on edge normals that point outwards of a polygon.

Generating edge normals

It will prove to be essential for the later problems to have normals for the edges
that point outwards from the polygon. We might as well start by saying that for an
edge of slope m, the normal would be (-m,1) unitized. The second preliminary is
defining modulo space addition and subtraction.

Let a and b be integers of modulo n space. Then, a⊕ b is defined to be (a+b)%n,
where x%y means "remainder of the division of x by y" (the remainder is always
positive, between 0 and y-1). Similarly, aΘb is defined to be (a-b)%n. As an
example, let's assume we are working in modulo 8 space. Then,

3⊕ 2=5%8=5 5⊕ 6=11%8=3 4Θ3=1%8=1 4Θ7=-3%8=5

The first step is to generate normals for all edges by calculating (-m,1) and
unitizing it. These normals will not all be oriented correctly.

92

Let x0, x1, x2, ..., xn-1 be the vertices in a clockwise or counter-clockwise order
around a n-sided polygon. Furthermore, let Ni be the normal of the edge between
xi and xi⊕ 1.

The second step is finding the topmost vertex. In cases of ambiguity, of all
topmost vertices, take the leftmost. This vertex is certain to be convex. Say this is
vertex is vertex xi.

Let U be the vector from xi to xi⊕ 1, and V be the vector from xi to xiΘ1. Then
calculate the value of U•Ni. If it is positive, invert Ni, otherwise do nothing.
Similarly, calculate V•NiΘ1 and if it is positive, invert NiΘ1, otherwise do
nothing. Ni and NiΘ1 are now correctly oriented.

The point of that first step was to make at least one correctly oriented normal.
Then, start following the edges and generate correctly oriented normals as follows.

Given a vertex xi for which NiΘ1 is known to be correctly oriented, Ni can be
computed as follows. Let U be the vector from xi to xi⊕ 1, and V be the vector
from xi to xiΘ1. Calculate NiΘ1• (U+V) and Ni• (U+V). If the results are of the
same sign do nothing. If they are of different signs, invert Ni. Ni is now correctly
oriented.

Triangulating a polygon

Let us first cover the convex scenario. We will be using the same notation as in the
previous section.

Take any triplet of vertices xiΘ1, xi, xi⊕ 1. These three vertices form the first
triangle. Then, remove vertex xi from the list, and the polygon has now one less
vertex. Repeat until the polygon is a triangle, at which point you are finished.

One step of the algorithm is shown above.

93

The concave scenario is a bit more complicated. What we will do is split the
concave polygon into smaller polygons, eventually resulting in either triangles or
convex polygons that can be triangulated as above.

Find a vertex that is concave. Let U be the vector from xiΘ1 to xi. Then, vertex xi
is concave if and only if U•Ni is more than zero. Loop through the vertices until
you find such a vertex. If you do not find one, then the polygon is convex and
triangulate it as above.

From that vertex, find a second vertex xj for which the line segment from xi to xj
does not intersect any other edge. Then, insert that new edge, making two
polygons, one that has the vertices xi, xi⊕ 1, xi⊕ 2, ..., xj, and one that has vertices
xj, xj⊕ 1, xj⊕ 2, ..., xi. Re-apply the algorithm on these two smaller polygons.

It can be demonstrated that using the above algorithm on a n sided polygon will
generate exactly n-2 triangles.

Computing a plane normal from vertices

It can be shown that the (P,Q,R) components of the normal vectors are
proportional to the signed area of the projection of the polygon on the yz, xz and
xy plane respectively.

The signed area of a polygon in (u,v) coordinates can be shown to be:

A(u,v)=1/2×∑0≤i<n(vi+vi⊕ 1)×(ui⊕ 1-ui)

where (ui, vi) are the coordinates of vertex xi in 2d.

Since we're not really interested in the signed area, but some constant time the
signed area, the 1/2 can be safely ignored without loss of precision.

Given a polygon in 3d, one can compute the above with:

P=A(y,z) Q=A(z,x) R=A(x,y)

Or, if you want, P is the area as calculated using only the y and z components of
the points in 3d, Q is the area as calculated using the z and x components of points
in 3d, and R is the area as calculated using the x and y components of points in 3d.

Once this value of (P,Q,R) is known, the result should be normalized, and then
correct orientation should be checked as described hereafter.

It should be noted that the A(u,v) equation simplifies to

94

A(u,v)=1/2×[(u0-u1)(v0-v2)-(v0-v1)(u0-u2)]

in the case of a triangle. Again, the 1/2 constant can be ignored for normal
generation purposes.

Generating correctly oriented normals for polyhedra

In some cases, normal orientation is implicit in the object description we have. For
instance, some modelers output all vertices in a counterclockwise manner when
seen from above. If this is the case, then all that is needed is that the normal be
computed in a specific way, without changing the ordering of the vertices. Then
the normals will be correctly oriented.

If this is not the case, we need some form of algorithm to ensure proper normal
orientation.

For this task, we need to have computed the normals to the edges to for all
polygons making up the polyhedron, each in their respective plane of course. The
edges normals in the polygons planes can be localized in space for the polyhedron,
we are going to use this. Note that each edge is connected to two polygons, thus
has two normals, one per polygon.

Find the vertex with the smallest x coordinate. In case of ambiguity, resolve with
the smallest y coordinate. In case of ambiguity, resolve with the smallest z value.
This vertex is known to be convex. Take all edges connected to that vertex, and
find the vector U that is the sum of all edge normals (two per edge). Then, for
each face touching the point, calculate A•U, where A is the face normal. If the
result is negative, invert A, otherwise leave it as it is. All such faces now have
correctly oriented normal.

From this point, traverse all faces, propagating correctly oriented normals as
follows. Let us assume we have two faces F1 and F2, and that F1's normal is
correctly oriented. Let A1 and A2 denote F1 and F2's normals respectively. Pick
an edge shared by F1 and F2, and compute U, the sum of the two edge normals.
Then evaluate A1•U and A2•U. If they are of different signs, invert A2, otherwise
leave it that way. A2 is now correctly oriented.

A special note, if the dot products are very close to zero, the face should be
initialized with the same normal, and marked as ambiguous. Later, if you can find
another face to help you better determine the orientation of that face, use that
normal instead. At any rate, ambiguous faces should be avoided when propagating
normal orientation.

95

One very good way of propagating the normals is to start with one of the initial
faces for which we generated the normal, and then do a depth first search through
connected faces. The depth first search is elementary and will not be discussed here
because it is not absolutely necessary, though it will tend to minimize time spend
computing normals orientation.

Polygon clipping against a line or plane

This problem often occurs in computer graphics, and is often needed real time.
Fortunately, convenient solutions exist that work well.

The simplest solution is with convex polygons. In this case, one should note that
there are only 2 intersections of the clipping line or plane with the edges of the
polygon. When we face a concave case, there is an even number of intersections
with the edges, but some ordering should be done for them, or degenerate edges
might result.

The method for clipping convex polygons is illustrated below.

Note that if one wants to keep both pieces of the clipped polygon, this algorithm
can be trivially extended.

A more formal way of describing this algorithm is as follows.

96

Let v1,v2,v3, ..., vn be the list of vertices, listed in a

clockwise or counter-clockwise fashion.

Then P1 will be the first piece of polygon, and P2 will be the

second piece.

For i iterating from 1 to n do

If the edge from vi to vi⊕ 1 intersects the clipping line
break loop

End if

End for

For j iterating from i to n do

If the edge from vj to vj⊕ 1 intersects the clipping line
break loop

End if

End for

Let x be the intersection point of edge vi-vi⊕ 1 with the clipping
line.

Let y be the intersection point of edge vj-vj⊕ 1 with the clipping
line.

P1 is (in clockwise or counterclockwise)

v1,v2, ..., vi, x, y, vj+1, vj+1, ..., vn

P2 is x,vi+1,vi+2, ..., vj,y

When doing this to a concave polygon, the algorithm is slightly more complex.
Find all intersection points of edges with clipping line, and sort them according to
some arbitrary axis (try to use one for which the points coordinates vary a bit).
Name these sorted points p1, p2, ..., pn. Then, insert the new edges p1-p2, p3-p4,
..., pn-1 - pn. Then separate the two polygons and you are done.

97

Quaternions

Introduction

In this chapter, a good understanding of basic mathematics is assumed. I also have
been extremely lazy and I’m not giving any justifications whatsoever. Someday,
hopefully, this will be righted. It is possible to do very much everything that is
described here using only matrices with a good knowledge of linear algebra. For
instance, as a first step, we can find a matrix that rotates about an arbitrary unit
vector by a specific angle. Then, if we want to interpolate linearly between two
orientations, we can proceed as follows. First find the matrix M that expresses the
transform from the first orientation to the second orientation. Then find the
eigenvector of that matrix, this is the desired axis of rotation. Then linearly
interpolate the angle from 0 to whatever angle the two orientations make.

Let us recall complex numbers, which have the form a+bi, where i2=-1. These
complex numbers can also be represented in polar or exponential form. I will
interest myself mainly with the latter. The exponential form of a complex number is
Z=r×exp(iθ), where (r,θ) are the polar coordinates of Z in the complex plane. All
points in the plane can be represented by a complex number. Let B be a unit
quaternion (that is, of the form B=exp(iθ0)). Recall that, when multiplying two
complex numbers, we multiply the modules and add the angles. Let us multiply Z
by B. Then, we get ZB=r×exp(iθ+θ0), or Z rotated by θ0.

The morale of this story is that unit complex numbers can be used to represent
rotations in the plane.

We will now develop a similar tool for modeling rotations in 3d. A quaternion Q
will be of the form Q=W+Xi+Yj+Zk, where 1, i, j and k are linearly independent
quantities (and i, j and k are linearly independent imaginary numbers). Then, we
will define quaternion multiplication, by using the following basic rules:

i2=j2=k2=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j.

It will so turn out that, similarly to unit complex numbers represent rotations in the
plane, unit quaternions will represent rotations in 3d.

98

Obviously, this is a lot of work for "just another representation of rotations in 3d",
especially where matrices work fine. Indeed, even if one is using quaternions to
represent orientations, one will typically convert to a matrix when actual
transformations are required. The main advantage of quaternions is for
interpolating between two orientations in a useful manner, and mayhaps also for a
compact representation of orientations.

Preliminaries

Several notations can be used to write quaternions. The following are all
equivalent:

Q=W+Xi+Yj+Zk

Q=<W, A> with A=(X,Y,Z) (a real number W, with a 3d vector (X,Y,Z))

Q=(W,X,Y,Z) (a 4d vector)

We can define a multiplication operation that respects the following:

i2=j2=k2=-1, ij=-ji=k, jk=-kj=i, ki=-ik=j.

<a1, v1>×<a2,v2>=<a1a2-v1•v2 , s2v1+s1v2+v1×v2>

Of course, a1 and a2 are real numbers and v1 and v2 are 3d vectors.

The norm or module of a quaternion Q=(W,X,Y,Z) is defined as the euclidian
norm of vector (W,X,Y,Z). A unit quaternion is a quaternion for which its norm
is 1.

The conjugate of quaternion Q=<W,A> is defined as Qc=<W,-A>.

If we have the quaternion

Q=(0,v)=(0,X,Y,Z)

and the unit quaternion

U=(cos(θ/2),sin(θ/2)×V)

where V is a unit vector, and

Q'=(0,v')=U×Q×Uc

then it can be shown that v' is v rotated about V by an angle of θ.

99

Note that this implies that the two unit quaternions Q and -Q represent the same
rotation.

Conversion between quaternions and matrices

The quaternion Q=(W,X,Y,Z) (assuming Q is unit) is equivalent, when interpreted
as a rotation, to the matrix:

1 .2 Y
2 .2 Z

2

..2 X Y ..2 W Z

..2 X Z ..2 W Y

..2 X Y ..2 W Z

1 .2 X
2 .2 Z

2

..2 Y Z ..2 W X

..2 X Z ..2 W Y

..2 Y Z ..2 W X

1 .2 X
2 .2 Y

2

By examining the above matrix, it is easy to find, given an orthonormal orientation
matrix, the corresponding quaternion. First, compute W.

m11+m22+m33=3-4X2-4Y2-4Z2

(m11+m22+m33+1)/4=1-X2-Y2-Z2

But |(W,X,Y,Z)|=1 hence W2+X2+Y2+Z2=1 hence

W=[(m11+m22+m33+1)/4]1/2

Then, compute X, Y and Z.

X=(m32-m23)/4W

Y=(m13-m31)/4W

Z=(m21-m12)/4W

Orientation interpolation

Often, we might only have an initial orientation, and a desired orientation at some
point in the future, and no data in between. In this case, it might be desirable to
interpolate the orientations between these two key orientations. Assuming no other
data is available, quaternion interpolation is very appropriate.

100

This could be done with Euler angles. However, several problems arise when we
do so. We can very difficultly control the exact path of the rotation, or the speed
for that matter. We also get a problem called "Gimbal lock", where the object
appears to stop turning for a brief moment, and then starts again in an odd
direction.

Using quaternions, we get none of these problems. Speed of rotation can be made
constant, and the path of the rotation will be that of the shortest arc. However, we
get numerical problems when the rotation is close to 180 degrees. Also, we will
need to interpolate through more than 2 quaternions if we want to rotate by more
than 180 degrees.

The idea is to picture the unit quaternions as being on the unit hypersphere in 4d.
Then, we can find the shortest arc over that hypersphere between these two
quaternions, and interpolate linearly the angle along that arc.

Given two unit quaternions, q1 and q2, let us first find the angle between them. By
definition of angle as a function of dot product, we have:

φ=acos(q1•q2)

Then, let us have a parameter t that varies from 0 to 1. Then, the quaternion given
by:

q()t .sin().()1 t φ

sin()φ
q1 .sin().t φ

sin()φ
q2

will give uniformly distributed orientations between q1 and q2 as t varies from 0 to
1. In particular, q(0)=q1, q(1)=q2. This is called spherical linear interpolation,
or SLERP.

Note that we didn't check if we were using the shortest arc or the longest on the
great circle. In order to take the shortest path, we simply check that

(q1-q2)• (q1-q2)>(q1+q2)• (q1+q2)

If that is false, replace q2 by -q2 (this is allowed since Q and -Q represent the same
rotation).

The above formula will have numerical difficulties when φ is close to 0 or π. When
φ is close to 0, we can replace the SLERP with a simple linear interpolation. E.g.
q(t)=(1-t)q1+tq2. When φ is close to π, we need to add more keyframes
(intermediate quaternions).

101

Antialiasing

Introduction

In many places, we have approximated continuous phenomena by sampling it at
discrete intervals, and then reconstructing an image with these samples. As an
example, we have studied shooting one beam of light through the center of a pixel
and see what it intersects and then coloring the whole of the pixel by whatever
color corresponds to what it hits.

This might result in very inaccurate and sometimes unsightly pictures. As an
example, take a black and white tiled floor for which the tiles are 0.25 meters
wide, which we sampled at intervals of .5 meters. Then, we will have either all
white samples or all black samples. This does not represent the color of the floor,
which should either be a mix of black and white, or, in a certain sense, gray.

This is an example of aliasing in space, but numerous other types of aliasing exist.
For example, say we are making an animation by generating several pictures of a
scene with moving object and then displaying the still frames quickly (say, 24
frames per second). In our model, if an object moves fast enough, it might appear
to jump around on the screen. For example, if the object is 1 centimeter big, but
moves so fast that in 1/24th of a second (the duration of a frame), it's 5 centimeters
away from where it was before, the object will appear to jump very drastically. Or
even worse, an object could pass right in front of the camera in between frame a
and b, but not be on neither frame a nor b.

In this section, we will introduce a few of the techniques that can be used to fix
these problems.

Filtering

Filtering, in the way that we want to use it, is essentially a weighted average of a
signal. Filtering theory is extensive, but we are not concerned too much by it here.
I will just mention that it is possible to take the transform (Fourier, wavelet or
other) of a signal and then remove very small amplitude components and/or "high
frequency" components. This is what is traditionally viewed as filtering.

102

In our case a filter is represented by a filtering mask. We'll start with 1d cases. If
we have a 1d signal (think of it as a single scanline in a pixmap, or maybe some
sampled sound), then we have something like s1,s2,s3,s4, ..., sn, where the si's are
sampled data. Here, we have n samples. Then, we might want to create the
samples s1', s2', s3', ..., sn-1', where si'=(si+si+1)/2. This is an example of a filter,
sometimes referred to as a "low-pass filter". This is another legitimate filter:
si'=.25si+.75si+1. This particular filter is said to be biased towards si+1. In
general, the class of filters asi+bsi+1 can be represented by the vector equation
(a,b)• (si,si+1). (a,b) is said to be the filter mask. In the last example we gave, the
filter mask is (.25, .75).

In general, filters are applied by taking the weighted sum of several samples. We
normally like that the sum of the components of the filter mask be one, in which
case the filter tends to not change the overall intensity of the image. If the sum of
the components of the filter is not one, we get very different effect. As an example,
the filter (-1,2,-1) is sometimes called the differential filter, for it approximates the
derivative of a signal. It is generally not very useful as an approximation to the
derivative, however it tends to highlight contrasts in a signal and can be used to
help in edge detection, for example. This filter can be written as si'=-si+2si+1-si+2.

Two dimensional filters are generally more useful to computer graphics people.
They are usually written in matrix form, F=(fij). This is an example filter, called the
box filter.

1

16

2

16

1

16

2

16

4

16

2

16

1

16

2

16

1

16

q[i][j]=(p[i][j]+2p[i][j+1]+p[i][j+2]+

2p[i+1]+4p[i+1][j+1]+2p[i+1][j+2]+

p[i+2][j]+2p[i+2][j+1]+p[i+2][j+2])/16

Where q[i][j] is the filtered sample, and p[i][j]'s are the original samples.

These filters are made so as to remove very high frequency from images, which are
usually poorly represented. (High frequency component here is taken in the Fourier
series sense.)

Pixel accuracy

103

When applying any type of shading except flat shading to a polygon, pixel
precision becomes an issue. We often calculate incrementally some value per edge
(for example, in gouraud shading, we interpolate the shading linearly along the
edge, and in texture mapping, (u,v) texture coordinates get interpolated along
edges and across the polygon).

Referring to the figure above, an example will be given with Gouraud shading. The
small circles represent the pixels, and the dark edges are the edge of a triangle.
With Gouraud shading, we start at P and we are given some initial color. Then, we
want to interpolate down the edge. However, it is important to notice that P is less
than one scanline above the scanline of P1. Therefore, the vector drawn above
from P to P1 is shorter than the vector from P1 to P2, also drawn above. This
needs to be taken into consideration to get correct pixel accuracy. Furthermore,
once we have the correct color at P1, we can't simply put that color into pixel A
even though the distance between P1 and A is less than one pixel. We have to take
into account the distance from P1 to A into our calculations. As a matter of fact, in
this particular example, A is roughly halfway between the left and right edge so its
color should be roughly the average color of the two edges.

Then, as we go to the next scanline, we need to perform our calculations starting
from P1. Given the color at P1, we find the color at P2, and then we need to
calculate the proper color for pixel B by taking into account the distance from P2
to B. This goes on for the whole triangle or polygon.

This example can also illustrate how edge pixels should be considered. First of all,
edge pixels should be extremely rare. As can be seen in the example above, not one
pixel is exactly on an edge. In the very rare case when a pixel is exactly on an
edge, you can use a simple disambiguating rule to decide one it, such as "draw the
pixel only if it's on a left edge, not on a right edge". Another way of doing this is of
thinking of pixels as having irrational x coordinate and rational y coordinate so that
edges with rational endpoints have no hope of going through them.

104

Sub-pixel accuracy

The other way of improving the quality of our images is by doing all calculations at
some higher accuracy. The intuitive way of doing this is to create a high resolution
image and scale it down to the display resolution afterwards, which ought to
produce a better looking image.

It turns out that this works well, and is in fact hard to beat. However, it is rather
expensive, both in rendering time and storage space, and we will attempt to look
into alternate algorithms as well.

When scaling an image down, there comes the question of how pixels should be
averaged. This boils down to picking a filter, as in the previous section, and
applying it to each region of the pixmap that gets scaled down to one pixel. Note
that the uniform filter (the filter in which each pixel has equal weight) might not, as
could be thought at first, be the best choice. The box filter is already a better
choice. However, a uniform filter is better than no filter, and one should be
considered for a real-time system if it is easier to achieve than a generic filter.

An alternative to generating a fully blown high resolution picture is to adaptively
increase the resolution. If you find that several small objects get drawn in the same
pixel, subdivide that pixel into a small bitmap and calculate more precisely for that
pixel. This can be recursed at will, for arbitrary precision. However, this process is
still somewhat expensive, and has the disadvantage that it has to be more or less
hard-wired all over the graphics engine. It is hard to perform this in real time.

A very attractive alternative is the so-called A-buffer.

For each pixel, a 4x8 subpixel grid is associated. However, instead of having full
R,G and B components, they are merely bitmasks. Then, for all pixels, the
following is done. A list of all polygons covering this pixel has to be generated.
Then, the 4x8 bitmask of whatever is covered by a polygon in that pixel is
generated. Then, using and's the amount of overlap can be determined, etc... and
color can be computed using this (more on this later).

Let us use an example. Let's say that the following polygonal piece is in a pixel:

This is represented by the following bitmask:

105

00000000 00001111 11100000

00010000 = 00011111 and 11110000

00010000 00011111 11110000

00111000 00111111 11111000

 (A) (B) (C)

Notice that (A) is the bitmask for the part of the triangle that covers the pixel,
while (B) and (C) are the bitmasks for what's inside of the left and right edge,
respectively. Thus, bitmasks are computed for each edge and are and'ed together
to get the bitmask for the triangle. The bitmap can also be made by some exclusive
or of bitmasks (this latter method might be a bit less useful).

If we then or all bitmasks for all polygonal pieces together, we get a bitmask that
tells us what portions of the pixel are covered by any polygons. Then, using and,
we determine which pieces of polygons overlap. We might also need the Z value of
the pixel per polygon (not for each bit in the bitmask, only for the whole pixel), so
that we can determine which bitmasks are in front of each other. What follows is a
suggested algorithm for drawing a pixel:

Let B[i] be the bitmask of polygon i, i varies from 1 to n (number

of polygons covering the pixel).

Let C[i] is the color of the polygon i.

Let M be the following bitmask:

11111111

11111111

11111111

11111111

Let P be the pixel color, initialized to 0 (black) (either a color

vector, or a monochrome intensity)

Let K be the background pixel color

Assume polygons are sorted front to back (ie, polygon i is in

front of all polygons greater than i).

Let #X be the number of bits that are set in X

For j=1 to n, do

foo=B[j] AND M

P=P+C[j] * #foo / 32

M=M XOR foo

End For

P=P+K * #M / 32

Note that 4x8 bitmasks have the nice property of being 32 bits numbers, which can
be manipulated very easily on today's platforms. The algorithm can very easily be
adapted to 4x4 bitmasks (for 16 bit machines, for example) or 8x8 bitmasks (for
64 bits machines for example).

Also note that this algorithm works relatively well if polygons are depth sorted
front to back and then drawn. It can't really be drawn strictly back to front.

Time antialiasing, a.k.a. motion blur

106

We already mentioned the time aliasing effect. The most popular method of
performing time antialiasing is still to generate several frames at very close interval
and merge them together. Once more, different filters can be applied.

One has to be careful when performing motion blur. Visible motion blur is
something that should only happen when things are moving faster than the frame
rate allows us to see. For example, an animation going at 24 fps (frames per
seconds) should not have a trail behind an object moving one millimeter per frame
on the screen. Put in different terms, an animation going at 24 fps should not show
in a frame an event that happened 0.25 seconds ago. This effect, called persistence,
can be quite annoying, and though it can produce an interesting result, it is
generally not interesting or realistic to do so.

Therefore, if we want to generate a time antialiased animation at 24 fps, we really
need to generate something like an 120 fps animation, and then apply a filter to
merge the frames four by four and get a 24 fps animation. This is, as can be seen,
quite expensive. However, it tends to produce very nice looking pictures. If the
frame rate isn't kicked high enough, a fast moving object will appear (in our
example above) as 4 distinct though semitransparent images per frame. This is
probably undesirable, but little can be done if objects are moving fast enough.

Other approaches have been attempted, mostly in raytracing, and will not be
discussed here. One notable area that might be worth further interest is the
extruding of polygons as volumes in 4d with time as the fourth dimension and
trying to get the motion blur from that. This would have the advantage of being
much more exact than anything presented here, all the while not having problems
with very fast moving objects. However, even if the exact path of the object is
known, extrusion along that path might be too expensive or difficult to perform, so
linear extrusion might have to be considered. Nevertheless, I suspect this would
produce very attractive results.

Mipmapping

107

Texture mapping was described previously. However, a naive approach was taken;
we did not consider what happens when the texture is so scaled down that it takes
several texels to cover a single pixel. In the context of this chapter, however, we
would like to somehow "average" (more properly, filter) the texels that cover a
single pixel to get a nicer looking picture. To illustrate the problem, if the texture
is so shrunk that it barely covers one pixel, then the color of that pixel will be a
more or less random point from the texture. Hence, if the texture is not very
"smooth", this particular pixel can "blip", change color rapidly and scintillate. This
is of course undesirable. Also, even though the texture seen from afar might be
blue for the most part, a small reddish region might result in the whole pixel
appearing red, which would be wrong.

Performing different approaches can be taken to this antialiasing problem. We can
actually compute all the texels that fall within a pixel, then apply some filter,
perhaps even based on the size of the texel in the pixel. These sort of approaches
lend themselves very poorly to real-time applications, which is the main interest of
this document, hence we will not approach them.

A real-time alternative is Mipmapping. The texture map is pre-filtered to different
degrees, and at run time, we determine how much the texels get squished by the
perspective transform, and the select the proper mipmap.

Uniform Mipmapping

Classically, this is how mipmapping is done. We start with a texture map. Say the
texture map is of size 64x64. Then, mipmaps of size 32x32, 16x16, 8x8, 4x4, 2x2
and 1x1 are generated by recursively averaging 2x2 blocks of pixels. We start with
the 64x64 texture map, then average each 2x2 block to get a 32x32 mipmap. Then
we filter that mipmap again to get a 16x16 mipmap, and so on. The mipmaps can
be labelled "mipmap #1" for the unfiltered texture map, "mipmap #2" for the first
mipmap, and so on.

The mipmap should be chosen based on the amount of squishing we think the
texels will undergo. If we feel that each pixel will cover about 4 texels (roughly a
2x2 block), then we should use the 32x32 mipmap. If the texmap is even more
squished (perhaps 16 texels per pixel, 4x4) then the 16x16 mipmap should be used.

Let's look at memory requirements. Let K be the amount of memory used by the
basic texture map. First we observe that averaging 2x2 block of pixels and making
the first mipmap makes something which takes one fourth as much memory as the
texture map. As a matter of fact, each time we generate another mipmap, the
memory taken by the new mipmap is 1/4 that of the old. Hence the total memory
is:

K+K/4+K/16+K/64+K/256+...+K/(4n)<K+K/4+K/16+...+K/(4n)+...

108

=K(1+1/4+1/16+1/64+........)=4K/3

Hence, classical mipmapping takes but 1/3 more memory than straight texture
mapping.

The problem of determining which mipmap to use is, however, not trivial. As
mentioned previously, this should be a function of the "squishing" undergone by
the texels. However, the squishing in the x direction can be vastly different from
the squishing in the y direction. You can fight with this, or you can invent a newer
type of mipmapping.

Nonuniform Mipmapping

Instead of scaling the texture map homogeneously (by the same factor in x and y),
we can generate mipmaps with nonuniform scaling. This way, if there is a lot of
"squishing" in a direction, but very little in the other, a relatively good mipmap can
still be found.

Still using the 64x64 example above, we would generate mipmaps of the following
sizes:

64x64 64x32 64x16 64x8 64x4 64x2 64x1

32x64 32x32 32x16 32x8 32x4 32x2 32x1

16x64 16x32 16x16 16x8 16x4 16x2 16x1

8x64 8x32 8x16 8x8 8x4 8x2 8x1

4x64 4x32 4x16 4x8 4x4 4x2 4x1

2x64 2x32 2x16 2x8 2x4 2x2 2x1

1x64 1x32 1x16 1x8 1x4 1x2 1x1

Note that the mipmaps can be indexed by a pair of number. For instance, the
mipmap 64x64 can be identified to the pair (1,1), the mipmap 64x16 could be
identified to the point (3,1), mipma 2x4 would be (5,6) and mipmap 1x1 would be
(7,7).

It might appear on first look that this will require a lot of memory, however this is
not as bad as it might first appears. A geometric demonstration is given below.
This figure contains the texture map plus all the mipmaps listed above. As can be
seen, the memory taken by the mipmaps and the texture map is four times the
memory taken by the texture map alone.

109

In this case, the mipmaps are indexed by two indices. If no scaling occurs in the x
direction, but scaling is roughly 1/2 in the y direction, we might want to use
"mipmap (1,2)" (which is the 64x32 mipmap).

All in all, uniform mipmapping takes 4/3 the memory used by a texmap but has its
problems, while nonuniform mipmapping makes an attempt to reduce these
problems but takes 4 times as much memory as a simple texmap. Note, however,
that we are fortunate enough that the amount of memory taken by nonuniform
mipmapping is merely a constant times what is required for texture mapping.

Summed area tables

If we want to use a block filter (average all the texels that should go in a mipxel),
we can use something perhaps more general, called a summed area table.

Let’s say we have a texture map T[x][y]. We want to calculate the average of all
pixels in the square delimited by say (p,q) and (r,s). (That is, the square
[p,r)x[q,s).) One way is to pre-compute a summed area table of the same size as
the original texture. This summed area table S is defined as follows. S[x][y] is the
sum of all texels T[m][n] for m<x, n<y. Then it is easy to see that the sum of all
texels in the (p,q)-(r,s) square is Q=S[r,s]-S[p,s]-S[r,q]+S[p,q]. Then the mean is
M=Q/([r-p]x[s-q]).

110

This allows us to apply one very special type of filter to axis aligned boxes in the
texture map relatively quickly. The probem is, most of the time, the texels that
cover a pixel we are rendering do not form an axis aligned box in the texture map.
There are also other issues: the block filter is not a tremendously attractive one,
the filter should depend on the relative space taken up by each texel on screen, and
so on.

Bi-linear interpolation

Now we have (more or less) taken care of the case where several texels are in the
same pixel. But sometimes the opposite happens, and a texel gets stretched over
several pixels. Of course, if we are using one of the smaller mipmaps and the texels
cover many pixels it could mean that we should be using a larger mipmap. But
when we get to the raw texture map and there are no more "larger" texture maps,
we're stuck.

Bi-linear interpolation attempts to solve this problem. We will be using a linear
polynomial of two variables (ie, a plane equation), thus the “Bi” of bi-linear.
Typically, the texel coordinates will not be integer, as is depicted below.

The texels are nw, ne, sw and se (short for north west, north east and such). P is
the actual texture coordinate for the current pixel. A, B, C and D are the area of
the rectangles seen on the diagram above. The color we assign to the pixel will be:

A×nw+B×ne+C×se+D×sw

This is the "bi" part of bi-linear. Incidentally, this will also improve pictures when
mipmapping is used.

It is possible to use something other than linear interpolation. For instance, bi-
cubic interpolation is popular. Bicubic polynomials are often used. A grid of 4x4
texels will be used as control points for some uniform spline of two variables. Once
the spline coefficients are known, the spline is evaluated at the intermediate point P
(see the figure for bi-linear interpolation, above) and this value is used to shade the
pixel.

111

Tri-linear interpolation

Tri-linear interpolation is bi-linear interpolation with an additional interpolation.
First, a description for uniform mipmapping will be given, then this will be
extended to nonuniform mipmapping and summed area tables.

When we use mipmapping, we need a function which tells us what mipmap to use.
However, maybe this function tells us to use "mipmap #3.15", which we round to
simply "mipmap #3". This means that we should use a mipmap somewhat in
between 3 and 4, but more towards 3. Tri-linear interpolation simply interpolates
linearly the mipmap between mipmap 3 and 4 (probably using, in our specific
example of "mipmap #3.15", 85% of mipmap 3 and 15% of mipmap 4).

This will make the change in mipmaps quite smoother, which will have an
important effect on animations in particular.

Using nonuniform mipmapping, we simply extend our idea to interpolate linearly
between four mipmaps. Ie, if we want mipmap #3.2 in the x direction and #5.7 in
the y direction, we mix in (0.8×0.3)=0.24 of mipmap (3,5) with (0.2×0.3)=0.06 of
mipmap (4,5), (0.8×0.7)=0.56 of mipmap (3,6) and lastly (0.2×0.7)=0.14 of
mipmap (4,7). As we can see, mipmap (3,6) is the dominant one, as is to be
expected and mipmap (4,5) is barely used at all.

112

Glossary

Complex numbers: a number with a real and imaginary part, of the form Z=a+bi, where i is
the imaginary part. We define i2=-1. This way, we can define addition,
multiplication, subtraction, and even inverse. Complex numbers can be compared
to points in the plane. As such, they have a polar coordinate form. From this we
can define the euclidian norm, or absolute value of a complex number. By using
Euler's representation, we can put this form in exponential form. It is of note that
multiplication by unit complex numbers represent rotations in the plane.

Convex: term used to describe polytopes, such as polygons and polyhedra. It means that
the inside angle is always less than or equal to 180°. A triangle is always convex. A
square or a rectangle is convex, but other quadrilaterals may not be convex. The
term convex is sometimes used for a vertex or edge to say that the inside angle at
the vertex or edge is less than or equal to 180°. An equivalent definition of
convexity is, given a polytope, the intersection of the polytope and any line is
always 0 or 2 points except in degenerate cases. A stricter mathematical definition
is used in the spline chapter. It is a generalization of our simpler definitions.

Concave: any non self-intersecting polytope that is not convex is concave.

Edge: a line segment between 2 vertices. An edge typically delimitates a polygon. A
square has 4 edges, a cube has 12.

Euler angles: 3 angles used to represent a specific orientation. Can be used to represent
any rotation, but is not very useful in practice for several reasons. First, the order
in which the rotations are applied is important. Second, it is very hard to find the
Euler angles for a given orientation. Third, the angles have very little physical
meaning.

Face: a polygon that delimitates a polyhedron. A face is always planar. A cube has 6 faces.
Also, since polygons in 3d have two sides, they are sometimes referred to as faces.

Mach banding: The human eye accentuates contrasts. Therefore, if two surfaces of slightly
different colors lie next to each other, the boundary between the two will be clearly
visible since it's an area of high contrast (contrast is, more or less, change of color
over distance). This happens when we have too few colors to give a continuous
texture to a surface, or when coloring adjacent faces of an object with uniform but
slightly different shades of the same color.

113

Matrix: a 2 dimensional array of real numbers. Can also be thought as an array of vectors,
or a vector of vectors.

Normalizing: making a vector V of unit length, by multiplying it by 1/|V|.

Polygon: a flat, 2d polytope delimited by straight edges and vertices. Examples include
triangles, squares, decagons. We normally prefer all vertices to be distinct, and that
edges do not cross. We don't like it either when the polygon is disconnected (e.g.
has several, distinct parts that are not connected).

Polyhedron: a 3d polytope delimited by planar faces, linear edges and vertices. Examples
include cubes, tetrahedra, icosahedra. As with the polygon, we prefer vertices to
be distinct, edges not to cross, faces not to intersect, and the polyhedron to be
made of one piece as opposed to several disconnected pieces.

Polynomial: a mathematical entity that can be reduced to the form
a0+a1x+a2x2+a3x3+...+anxn for some n, ai being a real number and xi a real
variable. Example polynomials include: 3, 2+x, x5+2x+3, x(x+2)(x-3). Examples
of things that are not polynomials: x(x+1)/(x+2), x2+x+sinx.

Polytope: an object in n dimensions defined by linear constraints. Examples in 2d and 3d
are polygons and polyhedra, respectively. Polytopes are normally made of a single
piece. That is, from any point in a polytope, there is a path (which might be
twisted) that can get you to any other point in the polytope without exiting the
polytope.

Quaternion: similar to a complex number, a quaternion has 1 real and 3 imaginary parts. It
is generally written as Q=a+bi+cj+dk, where i, j and k are orthonormal imaginary
parts. These imaginary components satisfy the following equalities: ij=-ij=k, jk=-
jk=i, ki=-ik=j, i2=j2=k2=ijk=-1. From that, addition, subtraction and multiplication
operations can be defined. The useful thing about quaternions is, just multiplication
by unit complex numbers represent rotations in 2d, multiplication by unit
quaternions represent rotations in 3d.

Taylor series: A power series that approximates a function.

Texel: One unit in the texture map, the texture map equivalent of a pixel.

Texture mapping: Historically, this is the "sticking" of a "picture" on top of a polygon. A
bitmap, called texture map, is mapped on a polygon or triangle. This has been
generalized greatly however. Now, texture maps are sometimes replaced by a
function of an x,y,z point in space. Also, the texture need no longer be a simple
picture. The texture can be slight perturbations to the surface normal (bump
mapping), a "transparency level" (alpha channel) or a number of other things.

Pixel: The smallest dot displayable by the hardware. Also used to describe one small
square unit in a bitmap.

114

Vector: strictly speaking, a n-uplet, such as (3,2,5,1). It can be viewed as an arrow in any
number of dimensions, from one point p1 to a point p2. The vector from (x,y,z) to
(a,b,c) is (a-x,b-y,c-z).

Vertex: a point, usually called this way when it is the endpoint of at least one edge. A
square has 4 vertices, a cube has 8.

115

Bibliography

[1] James Foley, Andries van Dam, Steven Feiner, John Hughes, Computer Graphics

Principles and Practice, Addison-Wesley, 1990.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Introduction to

Algorithms, McGraw-Hill, 1989.

[3] S. D. Conte, Carl de Boor, Elementary Numerical Analysis, McGraw-Hill, 1980.

[4] Ming Chieh Lin, Efficient Collision Detection for animation and robotics, PhD
Thesis at University of California at Berkeley, 1993.

[5] Barsky, B., Computer Graphics and Geometric Modeling Using Beta-splines,
Springer-Verlag, New York, 1988.

